!"#"$#"!% &'()*+,-.)'.%/.%0.12*3--,%02.% +,43*.,5.%20,6%'35573083*.3'-,%/.% 8)5,*.+34*.,% "% 9% "% !"#"$#"!% !% :% 9% !"#"$#"!% Caratteristiche Classe 2: questi laser non possono causare danni agli occhi in circostanze normali, possono provocare danni solo se a contatto con gli occhi per un lungo periodo di tempo. La classe 2 dei laser opera solo nel range visibile (400 – 700 nm) e ha un potere di uscita uguale o inferiore di 1 mW. Informazioni di Sicurezza per laser di Classe 2 Classificazione: per tutti i sistemi laser deve essere nota la classe. La classificazione è certificata dal costruttore ovvero dal Responsabile se si tratta di sorgente prototipo. Qualora il laser sia modificato il Responsabile deve curare la riclassificazione del sistema. Etichettatura: ogni laser deve essere provvisto di opportune targhette che riportino la classe e la segnalazione delle aperture da cui emerge la radiazione. Precauzioni di base sul fascio: non osservare il fascio direttamente ;% <213%8)5,*.--,4,%.'%)=1,%3% 083>*)01)8.,% <?@A%/.%BC&D&B?%E&F&B?%!%% ?A?A%9$"!G9$":% H5.0,I3>,%B)55.'.% 35.0,I3>,A1)55.'.J2'.8/A.4% K% !% !"#"$#"!% "A! M3N'.-.)'3%/.%5213%8)5,*.--,4,% 9A! M.08)0.6O.%83*%.5%1)'4*)55)%/.%5213%8)5,*.--,4,% % !A! F83>*)01)8.,%1)'%5213%8)5,*.--,4,% :A! P)43*3%)=1)%*)4,4)*.)Q%3083*.3'-,%/.% 5,I)*,4)*.)% L% R% :% !"#"$#"!% !"#$%&'()*+#,-*()%.'/#*%0123#/'4&%5-&# % F4,*6'T%(*)+%D,UV35570%O.3V%)(%5.TW4%,0%,'%35314*)+,T'361%V,O3Q%)01.55,6'T% 35314*.1% N35/% ,'/% )01.55,6'T% +,T'361% N35/% V.4W% 4W3% 0,+3% (*3X23'1Y% I24% )*.3'43/%83*83'/.125,*% % <.'3,*% 8)5,*.-3/% 5.TW4Q% 35314*.1% N35/% O314)*% )01.55,430% .'% ,+85.42/3% V.4W% (*3X23'1Y%O%I24%,5V,Y0%8).'6'T%,5)'T%4W3%ZU%)*%[U%/.*316)'0Q% E(z, t) = E x0 sin [ 2!" t ! 2! z / ! + "0 ] ?+85.42/3%)(%4W3%35314*.1%N35/% 8*)8,T,6'T%,5)'T%-%,'/%5.'3,*5Y% 8)5,*.-3/%,5)'T%4W3%U%/.*316)'% S% !"! $%&'()*+#,-*()%.'/#*%0123#/'4&%5-&# E(z, t) = E x0 sin [ 2!" t ! 2! z / ! + "0 ] P)5,*.-3/% 5.TW4%,5)'T%U% ,U.0% % % E(z, t) = E y0 sin [ 2!" t %! 2! z / ! + "0 ] % P)5,*.-3/% 5.TW4%,5)'T%Y% ,U.0% % % "$% ;% !"#"$#"!% !"#$%&'()*+#,-*()%.'/#*%0123#/'4&%5-&# % % P)5,*.-3/% 5.TW4%,4%:;\% (*)+%U%,U.0% % % % % P)5,*.-3/% 5.TW4%,4%!$\% (*)+%U%,U.0% % % ""% !"#$%&'()*+#,-*()%.'/#*%0123#0'&')(*%.(5-&# % <.'3,*%8)5,*.-3/%5.TW4%V.4W%.40%8)5,*.-,6)'%,U.0%)*.3'43/%.'%,'Y%/.*316)'%.'%4W3%UY%85,'3% 1,'%I3%4W)2TW4%,0%1)'0.06'T%)(%4V)%1)+8)'3'40%)*.3'43/%,5)'T%4W3%U%,'/%Y%,U30]% *308316O35YA%% % % 0 0 % E = E x + E y = E x i + E y j sin 2 !" t ! 2 ! z / ! + " 0 % % { } [ ] !"#$%&'$()$*+,-%."#$%/0".$1% % %20$%'$3"45$%#"6*78)9$%:&%80$%8;:%+:#/:*$*8.%9$8$'#7*$.%80$%/:3"'7<"4:*% "=7.%:'7$*8"4:*% % "9% K% !"#"$#"!% 6%)67*()*+#,-*()%.'/#*%012# % F2+%)(%4V)%1)+8)'3'40%V.4W%./3'61,5%+,T'.42/30%H$%I24%S$\%)24%)(%8W,03Q% Ercp = E 0 {sin [ 2!" t ! 2! z / ! + "0 ] i + sin [ 2!" t ! 2! z / ! + "0 + # / 2 ] j} = = E 0 {sin [ 2!" t ! 2! z / ! + "0 ] i + cos [ 2!" t ! 2! z / ! + "0 ] j} Elcp = E 0 {sin [ 2!" t ! 2! z / ! + "0 ] i + sin [ 2!" t ! 2! z / ! + "0 ! # / 2 ] j} = = E 0 {sin [ 2!" t ! 2! z / ! + "0 ] i ! cos [ 2!" t ! 2! z / ! + "0 ] j} "!% 6%)67*()*+#,-*()%.'/#*%012# % F2+%)(%4V)%1)+8)'3'40%V.4W%./3'61,5%+,T'.42/30%H$%I24%S$\%)24%)(%8W,03Q% ":% L% !"#"$#"!% 6%)67*()*+#(&/#*%&'()*+#,-*()%.'/#*%012# % % B.*125,*5Y%8)5,*.-3/%5.TW4%^%1)+I.',6)'%)(%5.'3,*5Y%8)5,*.-3/%1)+8)'3'40%)24%)(%8W,03% % % % <.'3,*%8)5,*.-3/%5.TW4%^%1)+I.',6)'%)(%3X2,5%X2,'64Y%)(%*.TW4%,'/%53_%1.*125,*5Y% 8)5,*.-3/%1)+8)'3'40% Ex = Ercp + Elcp = E 0 sin [ 2!" t ! 2! z / ! + "0 ] i 2 Ey = Ercp ! Elcp = E 0 sin [ 2!" t ! 2! z / ! + "0 ] j 2 ";% 0'&')(*%.(5-&# % % B)+I.',6)'%)(%4V)%5.'3,*5Y%8)5,*.-3/%V,O30%V.4W%0,+3%(*3X23'1Y%,'/%8W,03%I24% /.`3*3'4%,+85.42/30Q%5.'3,*5Y%8)5,*.-3/%V,O3%V.4W%/.`3*3'4%8)5,*.-,6)'%,U.0% )*.3'4,6)'% % B)+I.',6)'%)(%4V)%5.'3,*5Y%8)5,*.-3/%V,O30%V.4W%0,+3%(*3X23'1Y%,'/%,+85.42/3%I24% )24%)(%8W,03Q%1.*125,*5Y%8)5,*.-3/%5.TW4%a53_%)*%*.TW4b% % B)+I.',6)'%)(%4V)%1.*125,*5Y%8)5,*.-3/%V,O30]%53_%,'/%*.TW4]%V.4W%0,+3%(*3X23'1Y]% ,+85.42/3%,'/%8W,03Q%5.'3,*5Y%8)5,*.-3/%5.TW4%% % D)*3%T3'3*,5%1,03Q%'**%,56(**+#,-*()%.'/#*%012%% % % E = E x0 sin [ 2!" t ! 2! z / ! + "0 ] i + E y0 sin [ 2!" t ! 2! z / ! + "0 + " ] j "K% R% !"#"$#"!% 8'&')(*%.(5-&% % E = E x0 sin [ 2!" t ! 2! z / ! + "0 ] i + E x0 sin [ 2!" t ! 2! z / ! + "0 + " ] j "L% 9"#:';%6'<#=-)#6-&2)-*#-=#,-*()%.'/#*%012# % )2*%3Y30%,*3%8)5,*.-,6)'GI5.'/c% % G! <.'3,*%8)5,*.-3*0%a/.1W*).1]%I.*.(*,'T3'4]dbQ%4*,0+.4%,%I3,+% )(% 5.TW4% VW)03% 35314*.1% N53/% O314)*% )01.55,430% .'% ,% 85,'3%% 4W,4%1)'4,.'0%4W3%I3,+%,U.0%a,50)%1,553/%85,'3%8)5,*.-3*0b% % G! e34,*/3*0Q% 1W,'T3% 4W3% *35,6O3% 8W,03% I34V33'% 4V)% )*4W)T)',5%8)5,*.-,6)'%1)+8)'3'40%)(%5.TW4%% % G! M38)5,*.-3*0Q%4*,0()*+%8)5,*.-3/%5.TW4%.'%2'8)5,*.-3/%5.TW4% % "R% S% !"#"$#"!% <.'3,*%8)5,*.-3*0% "S% 9$% "$% !"#"$#"!% &/3,5%8)5,*.-3*0Q% !^$\%%Gf%"$$g% !^S$\%%Gf%$g% % *3,5%8)5,*.-3*0Q% !^$\%%Gf%%%%h"$$g% !^S$\%%Gf%%f$g% % 9"% >(*7<?#*(@3# % % % % % % % % % % % I = I 0 cos2 ! i % VW3*3%&$%.0%4W3%.'.6,5%.'43'0.4Y]%,'/%%%%%%%%%%%%%%%%%%%%%%%%%%%.0%4W3%,'T53% ! i = !1 ! ! 0 I34V33'%4W3%5.TW4i0%.'.6,5%8)5,*.-,6)'%/.*316)'%,'/%4W3%,U.0%)(% 4W3%8)5,*.-3*A% 99% ""% !"#"$#"!% B.'3+,%!M% 9!% F+,*48W)'30Q% <2+.,%R$$]%<2+.,%S$$%3%j)k.,%HL%0)')%/)4,6%/.%2'%8,*61)5,*3%01W3*+)%l<HM% /3')+.',4)%B53,*@5,1k% 9:% "9% !"#"$#"!% W>8Q##VVVA'.k)'01W))5A.4% 9;% P)5,*.-3/%02'T5,0030% 9K% "!% Both P5 and entropy are higher in the regions of ered or multilayered interference, diffraction, zero and color, consisting of a regularly spaced lattice R/a, the system creates minimum-energy configuyellowish but the dark field. With ofuse of confocal we by incorporating rations formicroscopy, the curved substrates of features thatindistinguish one species beetle order diffraction, and border, light scattering (1–5)core and disappears greater curvature, revealing packing issues on observe that from thesepigmentation cells consist arcs onboundaries the surface of a(22–24). This results grain and defects fromnearly the other.concentric In bright fieldnested microscopy (Fig.that 2), lie often with contributions as of curved surfaces. in the faceted to morphology viruses (22) and the structureare of C. gloriosa seems to consist of analogous well. The complexity of the in part shallow cone. Wepatterns inferisthat the patterns structurally and optically the focalof conic The head, thorax, and abdomen of a beetle are determined genetically, but the final development hexagonal cells (~10 mm), where each cell ap- grain boundary scars in colloidosomes (particles domains spontaneously free surface of a yellow cholesteric These textures packedcrystal. on a spherical droplet) (23). We canall infer pearsthe to be green with a bright core or liquid and control is related formed to the conditions during the on curved, although the radius of curvature, R, is provide the basis forThe thephysical morphogenesis well as key insights for emulating the intricate optical that the exoskeleton of the beetle possesses imnucleus. Weas characterized the extent of hexagoformation of the pattern (10, 11). large compared with the size of individual cells, nal orderbeetles. in patterns by using Voronoi analysis, perfect hexagonal, cellular pattern because sixfold and chemical aspectsof of the morphogenesis can beof scarab response exoskeleton a, or R/a >> 1. Although hexagonal packing prounraveled by studying the patterns in nature and which is a versatile method for pattern recog- triangulations or hexagons are not energetically analyzing their analogs in equilibrium and non- nition and for modeling the properties of spatial favored everywhere. vides the most efficient utilization of space on a We examined the beetle exoskeleton with use equilibrium patterns formed in condensed matter structures (21). Although the population of sixfor nearly a century plane, defects in coordination number are essenridescent beetles, butterflies, certain sea or- light has been investigated (12–15). The quest for miniature optical devices sided polygons is the highest, there exist large of a laser scanning confocal microscope [Leica tial for wrapping such tessellations on a sphere (16–20),polygons. since itIfwasTCS firstSPreported by Michelson andto benefit manyfrom birds their color DMR XE (Leica Microsystems GmbH, numbers of fiveand seven-sided and photonicsganisms, is most likely the derive Wetzlar, Germany)] and the reconstructed map For example, soccer balls and C60 (fulldefine study of bioengineered and organelles of we to represent(6). the fraction of n-sided Recently Goldstein (7) summarized history a 3D(22). from theorgans interaction of light with thePnstructhe biological world. Rational design requires one polygons, we find that P5 decreased from 0.34 at of the underlying structure by using the autoture or morphology that is imprinted on their of optical measurements made in scarab beetles erenes) contain 12 pentagons in addition to the hexto understand how basic structural units interact agons that template the curved structure. Because and performed ellipsometric studies confirming exoskeletons (1–5). The bright and varied colors of with light and how they can be fabricated by Fig. 1. Photographs of A either self-assembly or a top-down beetles have been of approach. interest to scientists 6–8), (A) their polarizing behavior. TheBreflectance of the the beetle has a curved body, a certain number of the beetle (2, C. gloriosa. In this context, we have been examining the The bright history green color, C. gloriosa beetle has a broad halo from 500 to pentagons is expected, but the analysis reveals but they also have a long and interesting structure on the exocuticle of the beetle Chrysina with silver stripes as seen “jewel gloriosa), beetles,” which were in used in textiles 600 nm with two peaks at 530 (green) and 580 much higher disorder. According to Nelson (22), gloriosaas (or Plusiotis which selectively unpolarized light or with reflects left circularly polarized and posthe energetic cost associated with creating these nm (yellow), respectively. or ornaments (9) inlight many Asiana countries. The left circular polarizer. (B) sesses a brilliant metallic appearance (Fig. 1). If The green color is mostly When the exoskeleton of the beetle is ob- 12 defects scales as YR2, where Y is the twostudy of photonics in nature reveals beautiful and left circularly polarized light is blocked by the lost when seen with a right served under an optical microscope, the body dimensional (2D) Young’s modulus. Because the examples ofasubwavelength structural use of adiverse quarter wave plate and polarizer, as circular polarizer. feashown intures Fig. 1B, beetle observed loses its characterthatthecreate colors through thin lay- appears as a richly decorated mosaic of cusps cost becomes substantial for systems with large istic bright green reflection. The ability of certain and color, consisting of a regularly spaced lattice R/a, the system creates minimum-energy configuered or multilayered interference, diffraction, zero species of beetles to reflect circularly polarized I 1 order diffraction, and light scattering (1–5) and of features that distinguish one species of beetle often with contributions from pigmentation as from the other. In bright field microscopy (Fig. 2), well. The complexity of the patterns is in part the structure of C. gloriosa seems to consist of determined genetically, but the final development hexagonal cells (~10 mm), where each cell apand control is related to the conditions during the pears to be green with a bright yellow core or formation of the pattern (10, 11). The physical nucleus. We characterized the extent of hexago24 JULY 2009 order325 in patterns by using Voronoi analysis, and chemical aspects ofwww.sciencemag.org morphogenesis can SCIENCE be nal VOL unraveled by studying the patterns in nature and which is a versatile method for pattern recoganalyzing their analogs in equilibrium and non- nition and for modeling the properties of spatial equilibrium patterns formed in condensed matter structures (21). Although the population of six(12–15). The quest for miniature optical devices sided polygons is the highest, there exist large five- and seven-sided polygons. If and photonics is most likely to benefit1,2 from the 2,3numbers of 1,2 Vivek Sharma, Matija Crne, Jung Ok Park, Mohan Srinivasarao1,2,3 study of bioengineered organs and organelles of we define Pn to represent the fraction of n-sided the biological world. Rational design requires one beetle, polygons, we findwhich that selectively P5 decreased 0.34 at The iridescent metallic green Chrysina gloriosa, reflectsfrom left circularly polarized light, possesses an exoskeleton decorated by hexagonal cells (~10 mm) that coexist with to understand how basic structural units interact and heptagons.by The fraction of hexagons decreases with an increase in curvature. In with light and how they pentagons can be fabricated bright field microscopy, each cellFig. contains yellow core, 1.a bright Photographs ofplaced A in a greenish cell with either self-assembly or a top-down approach. yellowish border, but the core disappears in dark field. With use of confocal microscopy, we the beetle C. gloriosa. (A) observe these cells consist In this context, we have beenthat examining the of nearly concentric nested arcs that lie on the surface of a The bright green color, We infer that the patterns are structurally and optically analogous to the focal conic structure on the exocuticle shallow of the cone. beetle Chrysina silver stripes seen liquid crystal. These textures domains formed spontaneously onwith the free surface of aas cholesteric gloriosa (or Plusiotis gloriosa), selectively providewhich the basis for the morphogenesis as well aslight key insights in unpolarized or withfor emulating the intricate optical response of the exoskeleton reflects left circularly polarized light and pos-of scarab a leftbeetles. circular polarizer. (B) sesses a brilliant metallic appearance (Fig. 1). If The green color is mostly beetles,by butterflies, sea or- light has been investigated for nearly a century left circularly polarized lightridescent is blocked the certain losttheir when seen(16–20), with a right since it was first reported by Michelson ganisms, and many birds derive color use of a quarter wave plate from and the a polarizer, circular polarizer. (6). Recently Goldstein (7) summarized the history interaction ofas light with the structure loses or morphology that is imprinted on their of optical measurements made in scarab beetles shown in Fig. 1B, the beetle its character(1–5). bright and varied colors of and performed ellipsometric studies confirming istic bright green reflection.exoskeletons The ability ofThe certain beetles have been of interest to scientists (2, 6–8), their polarizing behavior. The reflectance of the species of beetles to reflect but circularly they also havepolarized a long and interesting history C. gloriosa beetle has a broad halo from 500 to School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. 2Center for Advanced Research on Optical Microscopy (CAROM), Georgia Institute of Technology, Atlanta, GA 30332, USA. 3 School of Chemistry and Biochemisty, Georgia Institute of Technology, Atlanta, GA 30332, USA. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles !"#"$#"!% rations for the curved substrates by incorporating grain boundaries and defects (22–24). This results in the faceted morphology of viruses (22) and grain boundary scars in colloidosomes (particles packed on a spherical droplet) (23). We can infer that the exoskeleton of the beetle possesses im449 perfect hexagonal, cellular pattern because sixfold REPORTS triangulations or hexagons are not energetically the highly curved head to about 0.19 at the flattest favored region on everywhere. the beetles’ back, whereas P7 is typithe beetle exoskeleton with use callyWe closeexamined to 0.13 everywhere else. Although most of the pentagons and heptagons occur inmicroscope clusters, of a laser scanning confocal [Leica there are finite numbers of pentagons that occur TCS SP DMR XE (Leica Microsystems GmbH, individually. The number and spatial distribution of Wetzlar, Germany)] polygons characterizes the and spatialreconstructed order. Entropy, a 3D map S = the –SPnlnP was determined for the auton, of the structure of underlying structure by using each image. Whereas for perfectly ordered hexagons P6 = 1 and S = 0, the value of the entropy on beetle exoskeleton varies between 0.85 and 0.95. Both P5 and entropy B are higher in the regions of greater curvature, revealing packing issues on curved surfaces. The head, thorax, and abdomen of a beetle are all curved, although the radius of curvature, R, is large compared with the size of individual cells, a, or R/a >> 1. Although hexagonal packing provides the most efficient utilization of space on a plane, defects in coordination number are essential for wrapping such tessellations on a sphere (22). For example, soccer balls and C60 (fullerenes) contain 12 pentagons in addition to the hexagons that template the curved structure. Because the beetle has a curved body, a certain number of pentagons is expected, but the analysis reveals as “jewel beetles,” which were used in textiles 600 nm with two peaks at 530 (green) and 580 much higher disorder. According to Nelson (22), 1 the energetic cost associated with creating these ornaments (9) in many Asian countries. The nm (yellow), respectively. School of Polymer, Textile, and or Fiber Engineering, Georgia 2 When the exoskeleton of the beetle is ob- 12 defects scales as YR2, where Y is the twophotonics in nature reveals beautiful and Center Institute of Technology, Atlanta,study GA of 30332, USA. diverse examples of subwavelength structural fea- served under an optical microscope, the body dimensional (2D) Young’s modulus. Because the for Advanced Research on Optical Microscopy (CAROM), tures that create observed colors through thin lay- appears as a richly decorated mosaic of cusps cost becomes substantial for systems with large Georgia Institute of Technology,ered Atlanta, GA 30332, USA. or multilayered interference, diffraction, zero and color, consisting of a regularly spaced lattice R/a, the system creates minimum-energy configu3 School of Chemistry and Biochemisty, Georgia Institute order diffraction, and light of scattering (1–5) and of features that distinguish one species of beetle rations for the curved substrates by incorporating Technology, Atlanta, GA 30332,often USA.with contributions from pigmentation as from the other. In bright field microscopy (Fig. 2), grain boundaries and defects (22–24). This results well. The complexity of the patterns is in part the structure of C. gloriosa seems to consist of in the faceted morphology of viruses (22) and determined genetically, but the final development hexagonal cells (~10 mm), where each cell ap- grain boundary scars in colloidosomes (particles to be green withVOL a bright yellow24 coreJULY or packed and control is relatedwww.sciencemag.org to the conditions during the pearsSCIENCE 325 2009on a spherical droplet) (23). We can infer formation of the pattern (10, 11). The physical nucleus. We characterized the extent of hexago- that the exoskeleton of the beetle possesses imand chemical aspects of morphogenesis can be nal order in patterns by using Voronoi analysis, perfect hexagonal, cellular pattern because sixfold unraveled by studying the patterns in nature and which is a versatile method for pattern recog- triangulations or hexagons are not energetically analyzing their analogs in equilibrium and non- nition and for modeling the properties of spatial favored everywhere. We examined the beetle exoskeleton with use equilibrium patterns formed in condensed matter structures (21). Although the population of six(12–15). The quest for miniature optical devices sided polygons is the highest, there exist large of a laser scanning confocal microscope [Leica and photonics is most likely to benefit from the numbers of five- and seven-sided polygons. If TCS SP DMR XE (Leica Microsystems GmbH, study of bioengineered organs and organelles of we define Pn to represent the fraction of n-sided Wetzlar, Germany)] and reconstructed a 3D map the biological world. Rational design requires one polygons, we find that P5 decreased from 0.34 at of the underlying structure by using the autoto understand how basic structural units interact with light and how they can be fabricated by Fig. 1. Photographs of A B either self-assembly or a top-down approach. the beetle C. gloriosa. (A) In this context, we have been examining the The bright green color, structure on the exocuticle of the beetle Chrysina with silver stripes as seen gloriosa (or Plusiotis gloriosa), which selectively in unpolarized light or with reflects left circularly polarized light and pos- a left circular polarizer. (B) sesses a brilliant metallic appearance (Fig. 1). If The green color is mostly left circularly polarized light is blocked by the lost when seen with a right use of a quarter wave plate and a polarizer, as circular polarizer. shown in Fig. 1B, the beetle loses its characteristic bright green reflection. The ability of certain species of beetles to reflect circularly polarized I 1 449 9L% A"#B,'62)-<6-,+#@%21#,-*()%.'/#*%012# School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. 2Center for Advanced Research on Optical Microscopy (CAROM), Georgia Institute of Technology, Atlanta, GA 30332, USA. 3 School of Chemistry and Biochemisty, Georgia Institute of Technology, Atlanta, GA 30332, USA. www.sciencemag.org SCIENCE VOL 325 24 JULY 2009 449 9R% ":% !"#"$#"!% ?0%3U,+853]%.(%V3%,*3%.'43*3043/%.'%,I0)*I,'13%+3,02*3+3'40]%4W3%<,+I3*4G @33*%5,V%.0%O3*.N3/Q% % I % A = ! (" )CL = log10 0 % I % % % mW,4%+,Y%1W,'T3%.(%V3%203%8)5,*.-3/%5.TW4n% % •! j)4W.'Tc%%.(%4W3%0,+853%.0%.0)4*)8.1% •! M383'/0dA.(%4W3%0,+853%.0%,'.0)4*)8.1%a*308)'03%/383'/.'T%)'%4W3% )*.3'4,6)'%)(%4W3%8)5,*.-,6)'%,U.0%b% 9S% A|| = !|| (" )CL = log10 I 0,|| I ! log10 0," = !" (" )CL = A" I|| I" oW3%,I0)*86)'%)(%5.'3,*5Y%8)5,*.-3/%5.TW4%.0%*35,43/%4)%+)53125,*%04*2142*3% 4W*)2TW%4W3%0Y++34*Y%)(%4W3%V,O3%(2'16)'0% !$% ";% !"#"$#"!% C,56(*#)-2(5-&#(&/#6%)67*()#/%61)-%<D3## E1%)-F-,56(*##<,'62)-<6-,%'<# # % B.*125,*%M.1W*).0+%aBMb^%/.`3*3'13%.'%,I0)*I,'13%I34V33'%53_%,'/%*.TW4% 1.*125,*5Y%8)5,*.-3/%5.TW4% % F+,55%3`314% % lj<p%1W.*,5%+)5312530%a,0Y++34*.1%+)5312530%4W,4%/)%')4%3UW.I.4%+.**)*% 0Y++34*Yb% % 0,R 0,L R R 10 10 L R L A = ! (" )CL = log I I ! log I = ! (" )CL = AL I !! = ! L " ! R !"% !9% "K% !"#"$#"!% !!% D)5312530% )861,55Y% ,16O3% % a)*% 1W.*,5b% 3UW.I.4% 6%)67*()# /%61)-%<D# ,'/% -,56(*# )-2(5-&"## mW3'% ,% 1.*125,*5Y% /.1W*).1% 0,+853% .'43*,140% V.4W% 5.'3,*5Y% 8)5,*.-3/% 5.TW4]% .4% 4*,'0()*+0%4W3%5.'3,*%8)5,*.-,6)'%.'4)%355.861,5%8)5,*.-,6)'A% oW.0%W,883'0%I31,203%4W3%4V)%1.*125,*%1)+8)'3'40%)(%4W3%5.'3,*5Y%8)5,*.-3/%I3,+% VW.1W% )*.T.',55Y% W,/% 3X2,5% ,+85.42/30% ,*3% ,I0)*I3/% IY% /.`3*3'4% ,+)2'40]% *30256'T%.'%2'3X2,5%,+85.42/30%)(%4W303%1)+8)'3'40%.'%4W3%4*,'0+.>3/%5.TW4%% E = E x0 sin [ 2!" t ! 2! z / ! + "0 ] i + E y0 sin [ 2!" t ! 2! z / ! + "0 + " ] j oW3%355.861.4Y%)(%4W3%*30256'T%8)5,*.-,6)'%355.803%.0Q% ! CD = !" " C " L !:% "L% !"#"$#"!% l861,5% *)4,6)'Q% *)4,6)'% )(% 4W3% 8)5,*.-,6)'% 355.803% ,U.0% IY% ,'% )861,55Y% ,16O3% 02I04,'13]% *30254%)(%1.*125,*%I.*3(*.'T3'13% % &'% ,% 1.*125,*5Y% I.*.(*,'T3'4% 0,+853% 4W3*3% .0% /.`3*3'13% .'% 4W3% .'/.130% )(% *3(*,16)'% ()*% 53_G W,'/3/%a'<b%%,'/%*.TW4GW,'/3/%a'eb%1.*125,*5Y%8)5,*.-3/%5.TW4Q%% % % L R % mW3'% 8)5,*.-3/% 5.TW4% .'43*,140% V.4W% ,% 1.*125,*5Y% I.*.(*,'T3'4% 0,+853]% 4W3% *.TW4GW,'/3/% 1.*125,*% 1)+8)'3'4% .0% *34,*/3/% IY% ,'% ,+)2'4% /.`3*3'4% (*)+% 4W3% 53_GW,'/3/% 1.*125,*% 1)+8)'3'4]%*30256'T%.'%,%*)4,6)'%)(%4W3%8)5,*.-,6)'%355.803Q% !n = n " n !CB = !L "n " !;% !n > 0, nL > nR !n < 0, nL < nR /3U4*,*)4,4)*Y% 8)5,*.-,6)'%355.803%*)4,43/%.'% ,% 15)1kV.03% 03'03% ,11)*/.'T% 4)% ,'% )I03*O3*% 5))k.'T%4)V,*/%4W3%5.TW4%0)2*13% 53O)*)4,4)*Y% 8)5,*.-,6)'% 355.803% *)4,43/% .'% ,% 1)2'43*15)1kV.03% 03'03% ,11)*/.'T% 4)% ,'% )I03*O3*%5))k.'T%4)V,*/%4W3%5.TW4%0)2*13% !K% "R% !"#"$#"!% !L "n " &'%*,/.,'0% !CB = !n = nL " nR F831.N1%*)4,6)'%.'%/3T%/+G"%1+!%TG"% % % D)5,*%*)4,6)'%.'%/3T%<%1+G"%+)5G"% [!CB ] [!CB ] M F831.N1%*)4,6)'%,4%,%T.O3'%o%,'/%":# T [! ]! !L% H083*.3'-,%/.%5,I)*,4)*.)Q% D.02*,%/35%8)43*3%)=1)%*)4,4)*.)%/.%0)52-.)'.%/.%-211W3*.% !R% "S% !"#"$#"!% G,,*%6(5-&<# % D,'Y%1W3+.1,50%3UW.I.4%,%0831.N1%*)4,6)'%,0%,%2'.X23% 8*)83*4YA%P)5,*.+343*0%1,'%./3'6(Y%2'k')V'%0,+8530% I,03/%)'%4W.0%.(%)4W3*%O,*.,I530%021W%,0%1)'13'4*,6)'%,'/% 53'T4W%)(%0,+853%1355%53'T4W%,*3%1)'4*)553/%)*%,4%53,04% k')V'A%% B)'13'4*,6)'% ,'/% 82*.4Y% +3,02*3+3'40% ,*3% 30831.,55Y% .+8)*4,'4% 4)% /343*+.'3% 8*)/214%)*%.'T*3/.3'4%X2,5.4Y%.'%4W3%())/%q%I3O3*,T3%,'/%8W,*+,13261,5%.'/204*.30A% F,+8530% 4W,4% /.085,Y% 0831.N1% *)4,6)'0% 4W,4% 1,'% I3% 1,5125,43/% ()*% 82*.4Y% V.4W% ,% 8)5,*.+343*%.'152/3Q%% F43*)./0]% M.2*3610]% ?'6I.)610]% j,*1)610]% r.4,+.'0]% ?',5T30.10]% ?+.')% ?1./0]% H003'6,5%l.50]%P)5Y+3*0]%F2T,*0A% % !S% )01.55)01)8.)% 1W)883*% P)5,*.--,4)*3%"% <,03*%,%/.)/)% /.)/) P)5,*.--,4)*3%9% a,',5.--,4)*3b% 42I)%8)5,*.+34*.1)% 42I) 8)5,*.+34*.1) ()4)/.)/)% T2./,% :$% 9$% !"#"$#"!% <,03*%,%/.)/)% T2./,% :"% <?FHeQ%5213%1)3*3'43]%+)')1*)+,61,]% 1)55.+,4,]%8)5,*.--,4,% % % r3*.N1,*3c% :9% 9"% !"#"$#"!% E1-,,')# M.01)%*)4,'43%,%03>)*.%8.3'.#O2)6%83*%)>3'3*3%5213%s8250,'437A% % r35)1.4t%/.%*)4,-.)'3%*3T)5,I.53%,>*,O3*0)%.5%O,5)*3%/.%O)54,TT.)% .+8)04,4)%02%,5.+3'4,4)*3% o*.TT3*%3043*')%83*% 0.'1*)'.--,*3% 57,1X2.0.-.)'3%/35%03T',53% :!% H7I-#,-*()%D'2)%6-# % o2I)%8)*4,1,+8.)'.]%1,++.')%)=1)%"$%1+]%N'304*3%)=1W3% ::% 99% !"#"$#"!% J-*()%..(2-)'%% +)'4,4)%02%2'%T)'.)+34*)% P)5,*.--,4)*3%"%Z%,',5.--,4)*3% :;% K-2-/%-/-# % P3*%*.O35,-.)'3%/35%03T',53u%3`3>)%()4)353>*.1)% :K% 9!% !"#"$#"!% C<6%**-<6-,%-# P3*+3>3%53>2*,%/35%03T',53%1,>2*,4)%/,5%()4)/.)/)% B,O)%@jB%/,%()4)0.)/)% a03T',53b% B,O)%@jB%/,%1W)883*%% a4*.TT3*%)%*.(3*.+3'4)b% :L% &5%03T',53%,88,*3%1)+3%2'7)'/,%X2,/*,A%&%+,00.+.%1)**.08)'/)')%,%X2,'/)%.5% 1W)883*%5,01.,%8,00,*3%5,%5213]%.%+.'.+.%,%X2,'/)%.5%1W)883*%I5)11,%5,%5213A% +.02*,%/.`3*3'-.,53% <213%,+I.3'4,53%Z03T',53% %$%aFHvj?<Hb% <.O355)%5213%,+I.3'4,53% :R% 9:% !"#"$#"!% :S% J)',()(.%-&'#/'**'#<-*7.%-&%# % P*38,*,*3%4*3%0)52-.)'.%,%1)'13'4*,-.)'.%/31*3013'6%1)+8*303%4*,%$A$;%3%$A!% T#+5]%/.523'/)%.'%,1X2,%2'7)88)*42',%X2,'64t%/355)%-211W3*)%8*301354)% aT521)0.)]%0,11,*)0.)%)%(*2>)0.)b% % <,01.,*3%43*+)04,4,*3%,%9;\B%83*%42>,%5,%')>3]%.'%+)/)%/,%*,TT.2'T3*3% 3X2.5.I*.)%4*,%53%()*+3%,')+3*.1W3% % % ;$% 9;% !"#"$#"!% E-<2)7.%-&'#/'*#<'27,#'#(**%&'(D'&2-#L!M# % E.00,*3%,55,%T2./,%2'%1)+8)'3'43%)=1)%,55,%O)54,]%.'%)*/.'3]%,%8,*6*3%/,5%5,03*A% P*.+,% /.% ,113'/3*3% .5% 5,03*% 0.043+,*3% 2')% 01W3*+)% +.55.+34*,4)% ,55,% N'3% /355,% T2./,%83*%a.b%.'43*13>,*3%.5%(,01.)%3%a..b%,55.'3,*5)%.'%+)/)%1W3%8*)13/,%52'T)%2',% 4*,.3>)*.,%.5%8.w%8)00.I.53%/*.>,A% % ?>3'-.)'3Q% P3*% *,T.)'.% /.% 0.12*3--,% .5% (,01.)% 5,03*% /3O3% ,00)524,+3'43% 03+8*3% 3003*3%/.*3>)%.'%+)/)%/,%.'1./3*3%0255)%01W3*+)A%D3'4*3%0.%.'03*.01)')%53%,54*3% 1)+8)'3'6% 083T'3*3% .5% 5,03*% )882*3% 8)**3% /,O,'6% ,/% 300)% 2'% )04,1)5)% ,00)*I3'43Q%1.x%83*%3O.4,*3%*.y300.)'.%.'1)'4*)55,43A% % % ;"% E-<2)7.%-&'#/'*#<'27,#'#(**%&'(D'&2-#L9M# % M)8)%.5%5,03*%.'03*.*3]%'3557)*/.'3Q% G%&5%1W)883*% G%&5%8*.+)%8)5,*.--,4)*3% G%&5%031)'/)%8)5,*.--,4)*3%a,O3'/)%12*,%/.%5,01.,*3%4*,%.%/23%2')%08,-.)%,/3T2,4)% 83*%.5%0211300.O)%.'03*.+3'4)%/35%8)*4,1,+8.)'3b% G%&5%()4)/.)/)% G%&5%8)*4,1,+8.)'3%a42I)%8)5,*.+34*.1)b% % ?55.'3,*3% )T'.% 1)+8)'3'43% .'% +)/)% 1W3% .5% (,01.)% ')'% O3'T,% /3O.,4)% a.5% (,01.)% /3O3%.'1./3*3%03+8*3%0255)%04300)%82'4)%/355)%01W3*+)b% % jA@A% 83*% )>3'3*3% 2',% I2)',% *.8*)/21.I.5.4t]% .5% 42I)% 8)5,*.+34*.1)% jlj% /3O3% 3003*3%*.+)00)%)%08)04,4)%X2,'/)%0.%1,+I.,%0)52-.)'3% % % ;9% 9K% !"#"$#"!% N')%46(#/'**(#*'00'#/%#>(*7<# % e.3+8.*3%.5%42I)%8)5,*.+34*.1)%1)'%,1X2,%/3.)'.--,4,A% % o*)O,*3% .5% 82'4)% /.% I2.)% a8)5,*.--,4)*3% 3% ,',5.--,4)*3% 0)')% 83*83'/.1)5,*.b]% 1)**.08)'/3'43%,5%+.'.+)%/.%4*,0+.00.)'3% e2)4,*3% 8*)T*300.O,+3'43% 57,',5.--,4)*3% 3% *3T.04*,*3% 57.'43'0.4t% /35% 03T',53% .'% 2'% *,'T3%/.%,'T)5.%,II,04,'-,%,+8.)%a9$$G99$\b%3%1)'%2'%1)'T*2)%'2+3*)%/.%82'6%.'% +)/)%/,%8)43*%O3*.N1,*3%5,%53TT3%/.%D,520A%F.%1)'0.T5.,%/.%*3T.04*,*3%82'6%8.w%N=%.'% 8*)00.+.4t%/3.%+.'.+.%/.%4*,0+.00.)'3%83*%,O3*3%+,TT.)*3%8*31.0.)'3A% % e.8343*3%5,%+.02*,%83*%,5+3')%!%O)543%83*%,O3*3%2',%06+,%/35573**)*3%04,6061)A% % P5)>,*3% 57.'43'0.4t% /35% 03T',53% .'% (2'-.)'3% /3557,'T)5)% /.% *)4,-.)'3% !% 3% /.% 1)09!% 3% /.01243*3%T5.%,'/,+3'6%4*)O,6A# ;!% >%<7)(#/'*#,-2')'#-O6-#)-2(2-)%-#/%#<-*7.%-&%#/%#.7661')%#(#6-&6'&2)(.%-&%# 6)'<6'&5# # e.3+8.*3%.5%42I)%1)'%5,%8.w%/.52.4,%/3553%0)52-.)'.%.'%30,+3A%M343*+.',*3%.5%O,5)*3% ,'T)5,*3%/355,%'2)O,%8)0.-.)'3%/.%I2.)]%1W3%0.%0,*t%08)04,4)%,%1,20,%/35%8)43*3% *)4,4)*.)%/355,%0)52-.)'3A%% D.02*,*3% 57.'43'0.4t% /35% 03T',53% 83*% 2',% /31.',% /.% 82'6% .'4)*')% ,55,% 8)0.-.)'3% /.% +.'.+)A%j)4)%.5%O,5)*3%/355)%08)04,+3'4)%,'T)5,*3]%5,%1)'13'4*,-.)'3%3%.5%1,++.')% )=1)]%1,51)5,*3%.5%8)43*3%)=1)%*)4,4)*.)%0831.N1)A%?>3'-.)'3%,553%2'.4t%/.%+.02*,c% % % " T % [! ] ! = CL % e.8343*3%,5+3')%!%O)543%83*%1.,012',%/3553%4*3%0)52-.)'.A% F42/.,*3%57,'/,+3'4)%/35%8)43*3%)=1)%*)4,4)*.)%.'%(2'-.)'3%/355,%1)'13'4*,-.)'3%3% 1)++3'4,*3%57,'/,+3'4)A% ;:% 9L% !"#"$#"!% :'2')D%&(.%-&'#/'**(#6-&6'&2)(.%-&'#/%#7&(#<-*7.%-&'#%&6-0&%2(# % j)4)%.5%O,5)*3%/35%8)43*3%)=1)%*)4,4)*.)%/355)%-211W3*)%.'%30,+3]%/343*+.',*3% 5,%1)'13'4*,-.)'3%/.%2',%0)52-.)'3%.'1)T'.4,A% M.01243*3%53%8)00.I.5.%()'6%/.%3**)*3A% % % ;;% >%<7)(#/'*#,-2')'#-O6-#)-2(2-)%-3#7&%2P#/%#D%<7)(# # %Q%,'T)5)%/.%12.%0.%z%08)04,4)%.5%82'4)%/.%I2.)]%1)**.08)'/3'43%,55,%*)4,-.)'3%/35% 8.,')%/.%8)5,*.--,-.)'3A%B)**.08)'/3%,%&B@A%j35%')04*)%1,0)%+.02*,4)%.'%T*,/.% 0300,T30.+,5.%a/3Tb% BQ%1)'13'4*,-.)'3% <Q1,++.')%)=1)% % T [! ]! = 20 [! ] D = " CL /.%0)5.4)%308*300)%.'Q% /3T%/+G"%1+!%TG"% ! CL <3TT3%/.%@.)4% ao^9$\B] "^*.T,%M%/35%0)/.)%,%;RSA!%'+b% ;K% 9R%