GNGTS 2007 SESSIONE 2.2 sono state effettuate con Tromino e analizzate con software Grilla, mentre le misure in array sono state fatte usando array di Tromino ad apertura sintetica sincronizzati attraverso il canale GPS. Questi array, che hanno utilizzato sino a nove elementi, hanno permesso la misura simultanea HVSR in tutti i nodi. Ciò ha permesso altresì di verificare l’effetto di eventuali modi superiori sia negli array che negli HVSR e di effettuare considerazioni sulla natura 1D o meno del sottosuolo (Mulargia e Castellaro, 2007). Gli array sono stati disegnati per una resilienza ottimale agli alias, utilizzando distanze di spaziatura prime tra loro. La tecnica a stazione singola proposta si è dimostrata capace di fornire curve teoriche di dispersione delle onde di Rayleigh e stime di Vs30 coerenti con quelle misurate dagli array ESAC and ReMi (Fig. 3), nonché un buon accordo con la geologia di superficie. La tecnica proposta appare pertanto come una alternativa veloce e a basso costo per la stima di Vs30 e la classificazione sismica dei suoli secondo la normativa vigente. Ovviamente, come ogni tecnica, anche quella proposta ha dei limiti. Essi sono: 1. la tecnica proposta si basa su un modello predeterminato del rumore sismico; 2. si fonda sull’assunto 1D del sottosuolo, mentre molto spesso i il sottosuolo non è 1D (Mulargia e Castellaro, 2007a). Il grande vantaggio della tecnica HVSR è che essa permette di riconoscere la presenza di eterogeneità laterali mentre le tecniche ad array non lo permettono affatto; 3. poiché l’ampiezza del rapporto H/V a basse frequenze (indicativamente sotto 0.5 Hz) dipende dalle condizioni meteorologiche (Mulargia and Castellaro, 2007b), la tecnica è applicabile solo sopra questa frequenza; 4. poiché l’ampiezza dei picchi H/V dipende in certa misura anche dal lisciamento adottato, il profilo di Vs è approssimato; 5. nei casi in cui sia presente un’inversione di velocità, l’inversione della curva HVSR diventa più complicata, in quanto le discontinuità stratigrafiche minori vengono mascherate. In questi casi peraltro, la comparsa dei modi superiori nelle corrispondenti registrazioni in array, porta anche queste ultime a soffrire, sia per la scarsa affidabilità del picking che per l’inversione, che diventa instabile. Bibliografia Castellaro S., e Mulargia F.; 2007: Vs30, parametro obbligatorio ma inefficace per la stima dell’amplificazione sismica, Roma, GNGTS. Mulargia F. e Castellaro S.; 2007a: The large inaccuracy of measured Vs profiles: non 1-D subsoil? Roma, GNGTS. Mulargia F. e Castellaro S.; 2007b: Single station passive seismic stratigraphy to almost 2 km depth, Roma, GNGTS. Ben-Menahem A. e Singh S.J.; 1981: Seismic waves and sources, Springer-Verlag, New York, 1108 pp. Mucciarelli M. e Gallipoli M.R.; 2006: Comparison between Vs30 and other estimates of site amplification in Italy, Conf. Earthq. Eng. and Seismol., Geneva, 3-8 Sept., no. 270. SEISMIC SITE EFFECT: SV WAVES PHASE SHIFT IN VISCO-ELASTIC NON LINEAR MEDIA V. Di Fiore(1) and P.P. Bruno(2) (1) Consiglio Nazionale delle Ricerche, IAMC, Naples (2) Istituto Nazionale di Geofisica e vulcanologia, Osservatorio Vesuviano, Naples Local seismic amplification function (SAF) depends on elastic and geometric parameters of the soil. In fact, many authors have carried out research in this particular field obtaining very important results (e.g. Seed et al., 1986; Aki et al., 1988; Bravo et al., 1988; Cao and Lee, 1989; Lee et al., 1990, 1992; Bruno et al.,1999; Rapolla et al., 2002). In most bibliography record, the seismic amplification function (SAF) was studied taking into account only the amplitude variation with respect to frequency. Because the overburden can also generate constructive or destructive interference, in 331 SESSIONE 2.2 GNGTS 2007 this paper we attempted to understand the influence of those parameters (i.e. layers thickness and its shear wave velocity) on the ground motion phase shift. In our study, we assumed a visco-elastic and non-linear behavior of the overburden. In fact, nonlinear effects, such as an increase in damping and reduction in shear wave velocity as excitation strength increases, are commonly recognized in the dynamic loading of soil especially at shear strains larger than 10-5 – 10-4 percent (Seed et al., 1986; Beresnev and Wen, 1995a; Kramer, 1996). We studied 25 synthetic models characterized by different mechanical properties and variable thickness. In order to model the soil behavior in one-dimensional analysis we needed experimental values of mechanical parameters that were taken from idriss et al., 1990. The model implemented to study the input motion phase shift at the free surface, consist of an overburden layer overlaying a horizontal seismic basement (half-space). The overburden is constituted by a single layer whose thickness was varied from 6 to 30 m with 1 m step. For each step on thickness the shear wave velocity ranged from 200 to 600 m/s with 100 m/s step. For all models the overburden’s density was 1.40 g/cm3, the bedrock shear wave velocity (SV) was set to 750 m/s while the mass density was 1.8 g/cm3. Fig. 1 reports the non linear strains over damping and strain over shear modulus curves that we used in our study (idriss et al., 1990). The models used for simulating the soil stress-strain response during a cyclic loading is the viscoelastic Kelvin-Voigt model (Bardet et al., 2000).The differential equation that describes the viscoelastic Kelvin-Voigt behaviour is: (1) where: u is the horizontal displacement; G is the shear modulus; δ is the mass density; η is a mass-proportional damping coefficient; t is the time; z is the depth. We also utilized a linear equivalent analyses procedure (Idriss and Sun, 1992; Sugito, 1995) to solve for the nonlinear behavior of visco-elastic medium. Our study we assumed a shear wave (SV) propagating vertically upward in a one-dimensional Fig. 1 – Material behaviour obtained by experimental curves: a) shear modulus and b) damping ratio of the overburden SV shear strain amplitude. c) and d) are the curves referred at the bedrock (Idriss, 1990). 332 GNGTS 2007 SESSIONE 2.2 Fig. 2 – Scheme of the synthetic models utilized in our study. H is variable from 6 to 30 m; shear wave velocity variable from 200 to 600 m/s; mass density overburden is 1.40 g/cm3; The bedrock have a mass density of 1.80 g/cm3 and a shear wave velocity of 750 m/s. layered system, in which the soil layers are: (1) horizontally homogenous, (2) of infinite horizontal extent, and (3) subjected only to horizontal (SV) motion from bedrock (Fig. 2). To solve equation (1), we used the “continuous strata” approximation. In this approximation the soil deposit is divided into m-1 layers having various thickness hi and unit mass for i = 1 to m-1. In such generic subsurface, if we indicate with Aj and Bj the upward and downward waves, at any time and in a continuous subsoil, the solutions of equation (1) are: where K* the complex wavenumber, is: where G* is the complex shear modulus: The results obtained, are relative to 25 models, are summarized in the Figs. 3 and 4. Results show that the energy focusing/defocusing effects may potentially arise by constructive or destructive interference due to phase shift. We have seen by numerical analysis that: 1. generally, the zero phase shifts are presents greater at lower frequency, lower thickness layers and higher seismic waves velocity; 2. phase shift is not linear, is strong for Vs<400 m/s and for high frequency (>2.5 Hz); Phase shifts may introduce additional amplification in seismic signal by constructive/destructive 333 GNGTS 2007 SESSIONE 2.2 Fig. 3 – Phase shift (degrees) versus the overburden thickness (meters) and frequency for several SV wave velocity of the overburden (200-400 m/s). interference. The combination of both effects is to be then considered for a correct estimate of the seismic site response. In the engineering practice point 2 is often underestimated. In this paper we attempted do analyze the effect of velocity and thickness variation in the overburden on phase shifts. It’s clear that in all models an univocal and linear behavior of the phase shift with respect to velocity and thickness do not exist. Therefore, not being possible found a physics low between the phase shift and the elastic or geometrics parameters, every single case must be studied. Applying these techniques, we will be able in future to forecast the effects on the wavefield at free surface in terms of phase shift and then, modifying the thickness or the mechanical characteristics of soil, the interference constructive could be eliminated or however be attenuated. 334 GNGTS 2007 SESSIONE 2.2 Fig. 4 – Phase shift (degrees) versus the overburden thickness (meters) and frequency for several SV wave velocity of the overburden (500-600 m/s). 335 GNGTS 2007 SESSIONE 2.2 References Aki, K., 1988. Local site effects on ground motion. In Earthquake Engineering and Soil Dynamics II - Recent Advances in Ground Motion Evaluation. ed. J. L. Von. Thun, Geotechnical Special Pubblication N. 20, ASCE, New York, 103-155. Bardet, J. P. And Tobita T.(2001) “NERA, A computer program for Nonlinear Earthquake site Response Analysis of layered soils deposits,” University of Southern California, Los Angeles. Bravo, M.A., Sanchez-Sesma, F.J. and Chavez-Garcia, F.J., 1988. Ground motion on stratified alluvial deposits for incident Sh waves. Bull. Seismol. Soc. America, 78, 436-450. Bruno P.P.G., Di Fiore V., Rapolla A. and Roberti N. (1999) Influence of geometrical and geophysical parameters on the seismic site amplification factor. EJEEG, 4, 51-70. Cao, H., & Lee, V.W., Scattering of plane SH-wave by circular cylindrical canyons with variable depth-to-width ratio. European J. Of Earthquake Eng., III(3), 29-37. Davis, P.M., Kohler M., and Husker A. 2001, Earthquake Hazard from Focusing of Seismic Waves by Basin Structures, Annual Project Summary Report, USGS/NEHRP External Research Earthquake Hazards Program Grant # 00HQGR0076 Fishman, K.L. and Ahmad, S., 1995. Seismic response for alluvial valleys subjected to SH, P and SV waves. Soil Dynamics and Earthquake Engineering, 14, 249-258. Hardin B.O., 1978, The nature of stress-strain behaviour for soil – State of the Art. Proc. “Geotechnical Engineering and Soil Dynamics”, ASCE, Pasadena (California). Idriss, I. M. (1990) “Response of Soft Soil Sites during Earthquakes”, Proceedings, Memorial Symposium to honor Professor Harry Bolton Seed, Berkeley, California, Vol. II, May. Idriss, I. M. and Sun, J. I. (1992) “User’s Manual for SHAKE91,” Center for Geotechnical Modeling, Department of Civil Engineering, University of California, Davis. Kramer, S. L. (1996). Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, New Jersey, pp. 254-280. Lanzo G. & F. Silvestri (1999) Risposta sismica locale: teoria ed esperienze. 160 pp., Hevelius Edizioni, Benevento. Lee, V.W., 1990. On the scattering of plane SH waves by a semi-parabolic cylindrical canyons in an elastic half-space. Geophy. Journ., 100, 79-86. Lee V.W., Karl J. ,1990, Diffraction of SV waves by underground, circular, cylindrical cavities. Soil Dynamics and Earthquake Engineering 11, 445–456. Rapolla, A., Bais, G. Bruno, P. P. G. Di Fiore, V. (2002), Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas. Annals of Geophysics, 45-6, 779-790. Rassem, M., Heidebrecht, A.C. and Ghobarah, 1995. A Simple engineering model for the seismic site response of alluvial valleys. Soil Dynamics and Earthquake Engineering, 14, 199-210. Seed, H. B., Wong, R. T., Idriss, I. M. and Tokimatsu, K. (1986) “Moduli and Damping factors for Dynamic Analyses of Cohesionless Soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 11 2, No. GTI 1, November, pp.1016-1032. Sheriff R.E. and Geldart L.P.,1995. Exploration Seismology. Cambridge University Press II Ed., 183-184. Sugito, M. (1995) “Frequency-dependent equivalent strain for equi-linearized technique,” Proceedings of the First International Conference on Earthquake Geotechnical Engineering, Vol. 1, A. A. Balkena, Rotterdam, the Netherlands, pp. 655-660. Sun, J. I., Golesorkhi, R. and Seed, H. B. (1988) “Dynamic Moduli and Damping Ratios for Cohesive Soils,” Report No. UCB/EERC-88/15, Earthquake Engineering Research Center, University of California, Berkeley, 42p. Vucetic, M. and Dobry, R. (1991) “Effect of Soil Plasticity on Cyclic Response,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 111, No. 1, January, pp. 89-107. VALUTAZIONE COMPARATIVA E DI ATTENDIBILITÀ DELLE STIME DI PERICOLOSITÀ SISMICA IN RAPPORTO AGLI OSSERVABILI DISPONIBILI: APPLICAZIONE ALL’AREA ITALIANA D. Albarello(1) e V. D’Amico(2) (1) Dipartimento di Scienze della Terra, Università di Siena (2) Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano-Pavia E’ esperienza comune il fatto che le procedure numeriche disponibili migliorano assai più velocemente dei dati di base necessari alla loro applicazione. Ne consegue anche che, pur condividendo le stesse informazioni di partenza, diverse procedure producono risultati spesso assai differenti. Le stime di pericolosità sismica rappresentano un buon esempio di questa situazione. Negli ultimi anni sono molte le mappe di pericolosità a scala nazionale che si sono succedute come effetto sia delle variazioni apportate alle basi di dati che di differenti scelte metodologiche implementate nelle procedure di calcolo adottate. In questo contesto si pone il problema di una valutazione comparati- 336