Le Nanotecnologie per una Fotonica a base di Silicio Francesco Priolo MATIS-INFM & University of Catania Napoli, 10 Marzo 2005 Moore’ s Law More than Moore Si Optoelectronics MEMS Biochips Molecular Power generation devices More Moore diversification 130nm 90nm 65nm BiCMOS Optical data communicationrf CMOS + passives Diagnostic devices embedded MEMS 45nm Environment conscious devices Advanced smart devices data storage 32nm miniaturization Moore’ s law Nanotechnologies plays a major role in both cases!! dedicated Novel markets Interconnect length per chip versus year Interconnect bottleneck Motivations • The obvious choice towards the solution of the interconnect bottleneck would be to have silicon based, VLSI compatible, optical interconnects • The major limitations towards this dream is the absence of an efficient Si-based light source Optical chip Milestones in Si Photonics 1990 Room Temperature Light Emission by Quatum Confinement Effects (Porous Si) 1994 First Electroluminescent Si Device emitting at 1.54 micron at room temperature (Erbium in Si) 2000 Optical Gain from Si nanocrystals is discovered 2005 The first All-Silicon Laser (by Raman stimulated emission) is demonstrated Missing: An electrically pumped laser Si nanocrystals nanocrystals Si Quantum confinement 4.0 Energy gap (eV) 3.5 1.1 eV 3.0 2.5 2.0 1.5 1 nm 0.5 1.0 1.5 2.0 Crystal radius (nm) 2.5 Silicon Nanocrystals Room temperature Si nc luminescence spectra 1250 °C 1 h 1,2 PL Intensity (a.u.) Si nc radius 1,0 35 at. Si 37 at. Si 39 at. Si 42 at. Si 44 at. Si 0,8 0,6 0,4 0,2 0,0 600 700 800 900 1000 1100 1200 Wavelength (nm) TEM and SEM images of a Si nc device Metallization Poly-Si x SiO x Si substrate 100 nm 20 m EMMI image of a light emitting Si-nc device Erbium-Doped Erbium-Doped Si nanocrystals nanocrystals Si Er3+ energy levels Loss (dB/km) 100 50 Silica optical fiber 10 5 1.3 m 0.6 dB/km 0.9 m 1.5 dB/km 1.55 m 0.2 dB/km 1 .5 .1 .7 .8 .9 1.0 1.1 1.2 1.3 Wavelength (m) 1.4 1.5 1.6 1.7 Light transport BIT 1 Optical fiber BIT 0 Optical amplifiers Room temperature photoluminescence 3.0 Er doped Si nanocrystals Er doped SiO2 PL Intensity (a.u.) 2.5 2.0 1.5 4I 11/2 4I 13/2 1.54 m 10 mW 4I 1.0 15/2 x5 0.5 0.0 1400 1500 1600 Wavelength (nm) 1700 0.8 m Er3+ Si nc Si nc 0.8 m 1.54 m Light Emitting MOS Al 0.2 m Al c-Si 0.5 m Poly-Si SiO2+nc+Er c-Si Poly-Si SiO2+nc+Er c-Si SiO2 0.2 m c-Si SiO2 Poly-Si SiO2+nc+Er Electroluminescent MOS device 400 EL Intensity (arb. units) SEM 14 2 7x10 Er/cm 350 2 20 A/cm 300 250 200 150 100 50 0 1.4 0.3 mm 1.5 1.6 Wavelength (m) 1.7 Er and Si nanocluster optical amplifier 1.54 m Er3+ Stimulated emission Si nc Er3+ photon The colorful world of rare earth doped Si nc 1.2 Normalized PL Intensity Nd 1.0 Er Er Si nc Tm 0.8 0.6 Yb Tm 0.4 0.2 0.0 600 800 1000 1400 Wavelength (nm) 1600 1800 Photonic crystals crystals Photonic What is a Photonic Crystal? It is an optical material… …periodically patterned/microstructured… …on the scale of the wavelength of light Crystals -> for their periodicity Photonic -> because they act on light Artificial 3D Photonic Crystals The woodpile crystal is a fcc crystal initially proposed by a group at Iowa State University. It can have a complete photonic band gap and is widely studied. woodpile crystal 1 m 2D Photonic Crystals: planar waveguides Light emitting MOS devices with a surface photonic crystal structure Cristallo fotonico bidimensionale Polysilicon Si nc and Er Si substrate L’ efficienza di estrazione della luce è aumentata dalla presenza del cristallo fotonico. Photonic crystals can be found in Nature Butterfly wings Bar=1m SEM images H. Ghirandella Appl. Opt. 30 p.3492 1991 Conclusions Si nanocrystals have powerful pontentials in optoelectronics 20 nm Efficient electroluminescent devices have been fabricated Erbium doped Silicon nanoclusters might represent a suitable system for the fabrication of electrically driven optical amplifiers Photonic crystals represent a powerful tool to control light propagation and efficiently extract light