PHOTOABATEMENT OF WATER POLLUTANTS IN TURBID SUSPENSIONS BY MEANS OF PHOTOACTIVE FLUORINATED TRANSPARENT COATINGS W. Navarrini, Federico Persico, Maurizio Sansotera Dept. CMIC “G.Natta”, Politecnico di Milano, via Mancinelli 7, Milano, Italy PLAST 2015, May 6, Milano Aim of the Research Production of a chemically stable and resistent coating, able to promote the photooxidation of hydrosoluble organic pollutants[a,b] Organic Compound hν, TiO2 H2O, O2 Mineralization Products Flexible water treatment system developed up to industrial scale [a] A. Mills, S. Le Hunte, J. Photochem. Photobiol., A 108 (1997) 1. [b] S. Gatto, M. Sansotera, F. Persico, M. Gola, C. Pirola, W. Panzeri, W. Navarrini, C.L. Bianchi, Catal. Today, in press, doi: 10.1016/j.cattod.2014.04.031. PLAST 2015, Milano May 6th 2015 Photocatalysis as Advanced Oxidation Process Organic compounds [c,d,e] CO2, H2O, N2 CB TiIVOH O2-• {HO2•, HO2-, H2O2, OH-} TiIIIOH O2 H2O TiIVOH CO2CO , H22O, , H2NO, 2 VB Organic compounds TiIVOH•+ TiIVOH H2O OH• Organic compounds H2O CO2, H2O, N2 [c] O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32 (2004) 33. [d] M. Sansotera, F. Persico, C. Pirola, W. Navarrini, A. Di Michele, C.L. Bianchi, Appl. Catal., B 148 (2014) 29. [e] M. Sansotera, S. Gatto, F. Persico, C. Pirola, W. Navarrini, C.L. Bianchi, Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: chemical modification of the catalyst surface induced by fluoride ions, awarded as “Best Poster on Sustainability” at the 17th ESFC, Paris, 21-25 July 2013. PLAST 2015, Milano May 6th 2015 Photocatalysis as Advanced Oxidation Process Organic compounds [c,d,e] CO2, H2O, N2 CB TiIVOH O2-• {HO2•, HO2-, H2O2, OH-} TiIIIOH O2 H2O TiIVOH CO2CO , H22O, , H2NO, 2 VB Organic compounds TiIVOH•+ TiIVOH H2O OH• Organic compounds TiO2 immobilized into a polymeric matrix Chemical stability UV transparency Gas permeability Hydrophilic H2O CO2, H2O, N2 IONOMERIC AMORPHOUS FLUOROPOLYMERS [c] O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32 (2004) 33. [d] M. Sansotera, F. Persico, C. Pirola, W. Navarrini, A. Di Michele, C.L. Bianchi, Appl. Catal., B 148 (2014) 29. [e] M. Sansotera, S. Gatto, F. Persico, C. Pirola, W. Navarrini, C.L. Bianchi, Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: chemical modification of the catalyst surface induced by fluoride ions, awarded as “Best Poster on Sustainability” at the 17th ESFC, Paris, 21-25 July 2013. PLAST 2015, Milano May 6th 2015 Photocatalysis as Advanced Oxidation Process Organic compounds [c,d,e] CO2, H2O, N2 CB TiIVOH O2-• {HO2•, HO2-, H2O2, OH-} TiIIIOH O2 H2O TiIVOH CO2CO , H22O, , H2NO, 2 VB Organic compounds TiIVOH•+ TiIVOH H2O OH• Organic compounds TiO2 immobilized into a transparent polymeric matrix Chemical stability UV transparency Gas permeability Hydrophilic H2O CO2, H2O, N2 IONOMERIC AMORPHOUS FLUOROPOLYMERS ● Easy separation of the treated solution ● Appliable to turbid solutions ● Fouling prove photocatalytic assembly [c] O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32 (2004) 33. [d] M. Sansotera, F. Persico, C. Pirola, W. Navarrini, A. Di Michele, C.L. Bianchi, Appl. Catal., B 148 (2014) 29. [e] M. Sansotera, S. Gatto, F. Persico, C. Pirola, W. Navarrini, C.L. Bianchi, Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: chemical modification of the catalyst surface induced by fluoride ions, awarded as “Best Poster on Sustainability” at the 17th ESFC, Paris, 21-25 July 2013. PLAST 2015, Milano May 6th 2015 Fluorinated Ionomers Ionomers: TFE + Vinylethers containing sulphonic or carboxylic functions[f] • High chemical stability • High UV transparency • Strong acid behaviour • Hydrophilicity [f] W.G. Grot, Fluorinated Ionomers; W. Andrew, Ed.; PDL Handbook Series; Elsevier: Amsterdam, 2008. PLAST 2015, Milano May 6th 2015 Fluorinated Ionomers Ionomers: TFE + Vinylethers containing sulphonic or carboxylic functions[f] • High chemical stability • High UV transparency • Strong acid behaviour • Hydrophilicity Water collects around the clusters of hydrophilic sulphonic side chains[f] [f] W.G. Grot, Fluorinated Ionomers; W. Andrew, Ed.; PDL Handbook Series; Elsevier: Amsterdam, 2008. PLAST 2015, Milano May 6th 2015 High water absorption in which H+ can move freely Fluorinated Ionomers Ionomers: TFE + Vinylethers containing sulphonic or carboxylic functions[f] • High chemical stability • High UV transparency • Strong acid behaviour • Hydrophilicity MW 446 ‐RF ‐CF2‐CF‐O‐CF2‐CF2‐SO2F | CF3 306 380 280 ‐CF2‐CF2‐CF2‐CO2‐CH3 ‐CF2‐CF2‐CF2‐CF2‐SO2F ‐CF2‐CF2‐SO2F Water collects around the clusters of hydrophilic sulphonate side chains[f] [f] W.G. Grot, Fluorinated Ionomers; W. Andrew, Ed.; PDL Handbook Series; Elsevier: Amsterdam, 2008. PLAST 2015, Milano May 6th 2015 Polymer Name Nafion® Flemion® Aciplex® Flemion® 3M Polymer Dow Polymer Aquivion® Company DuPont Asahi Glass Asahi Chemicals Asahi Glass 3M Dow Chemicals SolvaySpecialtyPolymers High water absorption in which H+ can move freely Experimental apparatus TiO2 containing photoactive coating[g] Quartz sheath Low P UV Lamp λ = 254 nm Wav = 5 W Polluted aqueous solution Constant O2 feed (7 L/h) Quartz surface AD60 10% thermally treated AD60 10% non-thermally treated AQ 6% - TiO2 10% Magnetic stirrer [g] F. Persico, M. Sansotera, C.L. Bianchi, C. Cavallotti, W. Navarrini, Photocatalytic Activity of TiO2-embedded Fluorinated Transparent Coating for Oxidation of Hydrosoluble Pollutants in Turbid Suspensions, Appl. Catal., B, 170 (2015) 83-89 PLAST 2015, Milano May 6th 2015 Photoactive Coating Low P UV Lamp Polluted aqueous solution O2 Feed Quartz surface AD60 10% thermally treated Primer coating AD60 10% non-thermally treated Adhesion primer AQ 6% - TiO2 10% Magnetic stirrer TFE-MDO copolymer Hyflon® AD60 Solvay Specialty Polymers High chemical stability[h] High UV transparency[i] High hydrophobicity[i] [h] W. Navarrini, M.V. Diamanti, M. Sansotera, F. Persico, M. Wu, L. Magagnin, S. Radice, Prog. Org. Coat. 74 (2012) 794. [i] F. Persico, M. Sansotera, M.V. Diamanti, L. Magagnin, F. Venturini, W. Navarrini, Thin Solid Films 545 (2013) 210. PLAST 2015, Milano May 6th 2015 Photoactive Coating Low P UV Lamp Polluted aqueous solution O2 Feed Quartz surface AD60 10% thermally treated AD60 10% non-thermally treated AQ 6% - TiO2 10% Photoactive layer Magnetic stirrer TFE-SFVE copolymer Aquivion® D83-06A Solvay Specialty Polymers High chemical stability[j] High UV transparency Strong acid behaviour[j] Hydrophilicity [j] W. Navarrini, et al., IT L020090001, 17-10-2010. PLAST 2015, Milano May 6th 2015 Experimental apparatus Catalyst: TiO2 Degussa® P25 Nanometric TiO2 (Dp = 25-85 nm) Anatase : Rutile = 3 : 1 Low P UV Lamp Polluted aqueous solution O2 Feed Magnetic stirrer PLAST 2015, Milano May 6th 2015 Experimental apparatus Catalyst: TiO2 Degussa® P25 Nanometric TiO2 (Dp = 25-85 nm) Anatase : Rutile = 3 : 1 Tested organic pollutants: Rhodamine B-base (RhB) Low P UV Lamp Non biodegradable organic dye C28H30N2O3 - MW = 442.56 g/mol Polluted aqueous solution λmax = 554 nm O2 Feed Magnetic stirrer PLAST 2015, Milano May 6th 2015 Experimental apparatus Catalyst: TiO2 Degussa® P25 Nanometric TiO2 (Dp = 25-85 nm) Anatase : Rutile = 3 : 1 Tested organic pollutants: Rhodamine B-base (RhB) Low P UV Lamp Non biodegradable organic dye C28H30N2O3 - MW = 442.56 g/mol Polluted aqueous solution O2 Feed λmax = 554 nm Crystal Violet (CRY) Photodegradation standard Magnetic stirrer C25H31N3O - MW = 389.53 g/mol λmax = 592 nm PLAST 2015, Milano May 6th 2015 Experimental apparatus Catalyst: TiO2 Degussa® P25 Nanometric TiO2 (Dp = 25-85 nm) Anatase : Rutile = 3 : 1 Tested organic pollutants: Rhodamine B-base (RhB) Low P UV Lamp Non biodegradable organic dye C28H30N2O3 - MW = 442.56 g/mol Polluted aqueous solution O2 Feed λmax = 554 nm Crystal Violet (CRY) Photodegradation standard Magnetic stirrer C25H31N3O - MW = 389.53 g/mol λmax = 592 nm Analytical technique UV-Visible Spectrophotometry Lambert-Beer law: Abs = ε·[pollutant]·d PLAST 2015, Milano May 6th 2015 Experimental apparatus Quartz surface Low P UV Lamp AD60 10% thermally treated Polluted aqueous solution AD60 10% non-thermally treated O2 Feed AQ 6% - TiO2 10% Photoactive layer Magnetic stirrer O2, hν Photoactive layer operating mode RF-SO3-H/RHabs Organic Pollutant (RH) PLAST 2015, Milano May 6th 2015 TiO2* RF-SO3H CO2 + H2O + organic intermediates Photodegradation - Rhodamine B-base Tested organic pollutant: Rhodamine B-base (RhB) - [RhB]0 = O 8·10-6 mol/L ested photocatalysts: Photoactive Coating (PC) - Clear solution Photoactive Coating (PC) - Turbid solution (CaSO4, 8 g/L) TiO2 slurry (dispersed TiO2 = TiO2 content in the coating) • • • O CH3 N O CH3 PLAST 2015, Milano May 6th 2015 N CH3 CH3 Photodegradation - Rhodamine B-base Tested organic pollutant: O Rhodamine B-base (RhB) - [RhB]0 = 8·10-6 mol/L ested photocatalysts: Photoactive Coating (PC) - Clear solution Photoactive Coating (PC) - Turbid solution (CaSO4, 8 g/L) TiO2 slurry (dispersed TiO2 = TiO2 content in the coating) O • • • CH3 N N O 6.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 PC ‐ Turbid solution 5.0 PC ‐ Clear solution 4.0 CH3 TiO2 slurry TiO2 slurry ln C0/C C/C0 CH3 CH3 PC ‐ Turbid solution PC ‐ Clear solution 3.0 2.0 1.0 0.0 0 20 40 Time (min) 60 PLAST 2015, Milano May 6th 2015 80 0 20 40 Time (min) 60 80 Photodegradation - Rhodamine B-base Tested organic pollutant: O Rhodamine B-base (RhB) - [RhB]0 = 8·10-6 mol/L ested photocatalysts: Photoactive Coating (PC) - Clear solution Photoactive Coating (PC) - Turbid solution (CaSO4, 8 g/L) TiO2 slurry (dispersed TiO2 = TiO2 content in the coating) • • • 6.0 CH3 N TiO2 slurry 3.0 C = exp(-kapp·t) C0 2.0 1.0 Test kapp (min-1)a ∆ [RhB]60 (%)b PC - Clear solution 0.0923 99.4 PC - Turbid solution 0.0546 95.0 TiO2 slurry 0.0250 77.9 0.0 C/C0 0 20 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 40 Time (min) 60 80 TiO2 slurry PC ‐ Turbid solution PC ‐ Clear solution a Correlation b 0 20 40 60 80 Time (min) PLAST 2015, Milano May 6th 2015 CH3 CH3 Pseudo-first order degradation kinetics PC ‐ Clear solution 4.0 N O CH3 PC ‐ Turbid solution 5.0 ln C0/C O coefficients R2 higher than 0.99 for all the tests presented RhB concentration decrease calculated after 60 min treatment Photodegradation - Crystal Violet Tested organic pollutant: Crystal Violet (CRY) - [CRY]0 = 5·10-5 mol/L ested photocatalysts: Photoactive Coating (PC) - Clear solution Photoactive Coating (PC) - Turbid solution (CaSO4, 8 g/L) TiO2 slurry (dispersed TiO2 = TiO2 content in the coating) • • • PLAST 2015, Milano May 6th 2015 Photodegradation - Crystal Violet Tested organic pollutant: Crystal Violet (CRY) - [CRY]0 = 5·10-5 mol/L ested photocatalysts: Photoactive Coating (PC) - Clear solution Photoactive Coating (PC) - Turbid solution (CaSO4, 8 g/L) TiO2 slurry (dispersed TiO2 = TiO2 content in the coating) • • • 6.0 0.9 TiO2 slurry 0.8 PC ‐ Turbid solution 0.7 PC ‐ Clear solution TiO2 slurry PC ‐ Turbid solution 5.0 PC ‐ Clear solution 4.0 0.6 ln C 0/C ln C0 /C 1.0 0.5 0.4 3.0 2.0 0.3 0.2 1.0 0.1 0.0 0.0 0 20 40 Time (min) 60 PLAST 2015, Milano May 6th 2015 80 0 20 40 Time (min) 60 80 Photodegradation - Crystal Violet Tested organic pollutant: Crystal Violet (CRY) - [CRY]0 = 5·10-5 mol/L ested photocatalysts: Photoactive Coating (PC) - Clear solution Photoactive Coating (PC) - Turbid solution (CaSO4, 8 g/L) TiO2 slurry (dispersed TiO2 = TiO2 content in the coating) • • • 6.0 TiO2 slurry PC ‐ Turbid solution 5.0 PC ‐ Clear solution Pseudo-first order degradation kinetics ln C 0/C 4.0 3.0 C = exp(-kapp·t) C0 2.0 1.0 Test kapp (min-1)a ∆ [CRY]60 (%)b PC - Clear solution 0.0918 97.7 PC - Turbid solution 0.0555 95.3 TiO2 slurry 0.0300 76.0 0.0 0 20 40 Time (min) 60 80 ln C0/C 1.0 0.9 TiO2 slurry 0.8 PC ‐ Turbid solution 0.7 PC ‐ Clear solution 0.6 a Correlation 0.5 b 0.4 0.3 0.2 0.1 0.0 0 20 40 Time (min) 60 80 PLAST 2015, Milano May 6th 2015 coefficients R2 higher than 0.99 for all the tests presented CRY concentration decrease calculated after 60 min treatment Photodegradation - RhB, CRY 1.0 Pollutant kapp (min-1) PC - Clear solution RhB 0.0923 PC - Clear solution CRY 0.0918 PC - Turbid suspention RhB 0.0546 PC - Turbid suspention CRY 0.0555 RhB absorption 0.8 C/C0 Test CRY absorption 0.6 0.4 0.2 0.0 0 Apparent independence of the kapp values from the pollutant 20 40 Time (min) CO2, H2O, N2 Organic compounds TiIVOH•+ CO2, H2O, N2 CB TiIVOH VB PLAST 2015, Milano May 6th 2015 80 Pollutant absorption into the photoactive coating is the Rate Determining Step Organic compounds hν 60 TiIVOH O2-• {HO2•, HO2-, H2O2, OH-} TiIIIOH O2 H2O Photoactive coating characterization Profilometry Quartz surface PLAST 2015, Milano May 6th 2015 Layer Average Thickness (μm) AQ 6% - TiO2 10% 3.70 ± 0.44 Double AD60 10% 2.11 ± 0.19 Photoactive Coating 5.81 ± 0.63 Photoactive coating characterization Profilometry Quartz surface Scanning Electron Microscope - SEM PLAST 2015, Milano May 6th 2015 Layer Average Thickness (μm) AQ 6% - TiO2 10% 3.70 ± 0.44 Double AD60 10% 2.11 ± 0.19 Photoactive Coating 5.81 ± 0.63 Photoactive coating characterization Profilometry Quartz surface Scanning Electron Microscope - SEM Layer Average Thickness (μm) AQ 6% - TiO2 10% 3.70 ± 0.44 Double AD60 10% 2.11 ± 0.19 Photoactive Coating 5.81 ± 0.63 Atomic Force Microscopy - AFM Average Roughness, Sa = 59.3993 nm Root Mean Square, Sq = 82.2615 nm PLAST 2015, Milano May 6th 2015 Photoactive coating characterization Profilometry Quartz surface Scanning Electron Microscope - SEM Layer Average Thickness (μm) AQ 6% - TiO2 10% 3.70 ± 0.44 Double AD60 10% 2.11 ± 0.19 Photoactive Coating 5.81 ± 0.63 Atomic Force Microscopy - AFM Average Roughness, Sa = 59.3993 nm Root Mean Square, Sq = 82.2615 nm Homogenous dispersion of TiO2 in the photoactive layer Presence of TiO2 clusters - Improvable system efficiency PLAST 2015, Milano May 6th 2015 Photoactive coating stability Thermogravimetric analysis - TGA 1 Delta Weight (-) 0,9 Pure AD60 decomposition starts at 450 °C 0,8 0,7 0,6 0,5 Pure Aquivion decomposition starts at 300 °C, together with cross-link phenomena that delay the complete degradation 0,4 0,3 0,2 Pure Hyflon® AD60 Pure Aquivion® D83-06A 0,1 0 0 100 200 300 400 500 600 700 800 900 1 Temperature (°C) 0,9 Photoactive Coating TGA curves before and after the use are overlapping Used Photoactive Coating appears to be unhaltered Delta Weight (-) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 Pristine Photoactive Coating Used Photoactive Coating 0,1 0 0 100 200 300 400 Temperature (°C) PLAST 2015, Milano May 6th 2015 500 600 700 Achievements and Future Developments Achievements Future developments PLAST 2015, Milano May 6th 2015 Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry Future developments PLAST 2015, Milano May 6th 2015 Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions Future developments PLAST 2015, Milano May 6th 2015 Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Future developments PLAST 2015, Milano May 6th 2015 Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Preliminary results show that the coating appears unhaltered after continuous use Future developments Federico PersicoMay 6th 2015 PLAST 2015, Milano Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Preliminary results show that the coating appears unhaltered after continuous use Future developments Evaluation of the system efficiency towards different persistent pollutants (PFOA) Federico PersicoMay 6th 2015 PLAST 2015, Milano Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Preliminary results show that the coating appears unhaltered after continuous use Future developments Evaluation of the system efficiency towards different persistent pollutants (PFOA) Evaluation of the system efficiency with different photocatalyst deposition (Sol-Gel) Federico PersicoMay 6th 2015 PLAST 2015, Milano Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Preliminary results show that the coating appears unhaltered after continuous use Future developments Evaluation of the system efficiency towards different persistent pollutants (PFOA) Evaluation of the system efficiency with different photocatalyst deposition (Sol-Gel) Evaluation of the system efficiency working with different pH conditions PLAST 2015, Milano May 6th 2015 Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Preliminary results show that the coating appears unhaltered after continuous use Future developments Evaluation of the system efficiency towards different persistent pollutants (PFOA) Evaluation of the system efficiency with different photocatalyst deposition (Sol-Gel) Evaluation of the system efficiency working with different pH conditions Optimization of the ratio TiO2 / ionomer into the coating PLAST 2015, Milano May 6th 2015 Achievements and Future Developments Achievements The coating allows higher photoabatement rates than TiO2 slurry The coating can be employed to treat even turbid solutions The coating guarantees the abatement of different kinds of pollutants Preliminary results show that the coating appears unhaltered after continuous use Future developments Evaluation of the system efficiency towards different persistent pollutants (PFOA) Evaluation of the system efficiency with different photocatalyst deposition (Sol-Gel) Evaluation of the system efficiency working with different pH conditions Kinetic modelling of the system (Diffusion phenomena) Evaluation of this metodologie for the preparation useful organic compond PLAST 2015, Milano May 6th 2015 Acknowledgments Politecnico di Milano Dr. Ing. Francesco Venturini Dr. Ing. M. H. Wu Prof. L. Nobili (DLC) Prof. G. Dotelli Prof. L. Magagnin (AFM) Prof. A. Famulari (QMC) Prof. P. Gallo Stampino Dr. D. Picenoni (SEM) Mr. M. Ursini Solvay Solexis Dr. V. Tortelli Dr. M. Galimberti Dr. A. Sanguineti Dr. S. Radice (IR) Dr. E. Barchiesi (NMR) Dr. R. Pieri Ing. M. Apostolo Università degli Studi di Milano Prof. C.L.Bianchi Dr. S. Vitali Mr. A. Beretta PLAST 2015, Milano May 6th 39 2015 Thanks for your kind attention PLAST 2015, Milano May 6th 2015