La Materia Oscura dell’Universo e i risultati dell’esperimento DAMA R. Cerulli INFN-LNGS Gennaio 2007 Evidenze sperimentali sull’esistenza della Materia Oscura 9Prima evidenza sperimentale dell’esistenza di Materia Oscura nell’Universo: misure delle velocità delle galassie che compongono l’ammasso COMA eseguite da Zwicky nel 1933. Queste osservazioni mostrarono che la sola componente visibile di materia non poteva dare conto delle velocità misurate e che la materia non luminosa era presente nell’ammasso in percentuale nettamente superiore rispetto alla materia visibile. 9Pochi anni più tardi nel 1936 Smith confermò l’esistenza di Materia Oscura studiando l’ammasso di galassie della Vergine. 9Uno studio sistematico che accredita l’esistenza di Materia Oscura anche a livello di singole galassie è stato eseguito nel 1974 da due diversi gruppi, considerando molte galassie a spirale. Vediamo qui in particolare come è stato possibile evidenziare la presenza di Materia Oscura nelle galassie a spirale: velocità di rotazione degli oggetti astrofisici di una galassia a spirale ad una distanza R dal centro della galassia. • Nel caso di sola materia luminosa, gli oggetti molto distanti dal centro della galassia, al di fuori del disco luminoso, dovrebbero avere una velocità che decresce all’aumentare di R (~1/√R). • Le misure sperimentali mostrano, invece, che tali oggetti hanno velocità quasi costante per grandi valori di R. Tale risultato indica che deve esistere un’altra componente di materia, non visibile, detta alone oscuro. In particular, spherical symmetry; mass inside a sphere: M (r ) = ∫ ρdV V GM (r )m v2 =m ; r2 r ⇒ v2 = • Solar system or solar-system-like: v∝ • Galaxy: v about flat: ⇒ In fact: M (r ) ∝ r ; r02 ρ (r ) = ρ 0 2 ; r ⇒ GM (r ) r 1 r ρ∝ M (r ) = 4π ∫ r 0 1 r2 r02 2 ρ 0 2 r ' dr ' = 4πρ0 r02 r r' G 4πρ0 r02 r GM (r ) v= = = 4πGρ 0 r02 = const. r r 4 V = πr 3 3 Altre evidenze sull’esistenza della Materia Oscura 9 Studio del moto della Grande Nube di Magellano intorno all nostra Galassia 9 Studio dei raggi-X emessi dai gas che circondano le galassie ellittiche 9 Studio della distribuzione della velocità del plasma caldo intergalattico negli ammassi COMA Cluster Anche la nostra Galassia (la Via Lattea) contiene al suo interno un alone oscuro che la pervade La Via Lattea Una recente prova dell’esistenza di Materia Oscura D. Clowe et al., astro-ph/0608407 Collisione di due ammassi di galassie (1E0657-558 a z=0.296) avvenuta circa 100Myr fa 9 Nella collisione tra due ammassi le galassie si comportano come un gas di particelle non interagenti mentre le nubi di plasma all’interno dell’ammasso - che si comportano come un fluido ed emettono raggi X – sono fortemente interagenti e sono sottoposte alla “pressione di ariete” 9 Dopo la collisione le galassie precedono il plasma rallentato dalla “pressione di ariete” e le due componenti si trovano in due regioni ben separate 9 Il profilo del potenziale gravitazionale ottenuto studiando il lensing gravitazionale (contorno verde) è in accordo con la distribuzione spaziale delle galassie e non con la distribuzione del plasma 9 Questo si spiega ammettendo che la maggior parte della materia presente nel sistema è non luminosa 9 Teorie della gravità modificata non sono in grado di dar conto delle osservazioni Indicazioni dalla presenza di Materia Oscura dalla cosmologia Le fondamenta del modello del Big Bang 9 La scoperta dell’espansione dell’Universo – E. Hubble (1929) L’espansione dell’Universo 9Nel 1917 si pensava che l’Universo fosse statico e consistesse nella nostra Galassia e lo spazio vuoto che la circondava. Galassia M31- Andromeda 9Negli anni venti, E. Hubble usando il nuovo telescopio da 2.5 m sul monte Wilson riuscì a misurare: La Via Lattea ; la distanza di alcune nebulose dimostrando che erano galassie esterne ; le loro velocità di recessione Le galassie si allontanano con una velocità di recessione proporzionale alla distanza Espansione generale dello spazio-tempo: H0=500 km/s/Mpc v = H 0d H0=71 km/s/Mpc Le galassie non si allontanano nello spazio ma è lo spazio stesso che si espande, trascinando con sè le galassie Le dimensioni fisiche delle galassie non cambiano→la gravità le “isola” dall’espansione Effetto osservabile su scala intergalattica: la stella più vicina al Sole (Proxima Centauri), 4.22 anni-luce, si allontana da noi per il solo effetto dell’espansione con una velocità di soltanto 10 cm/s !! Espansione priva di un centro: Un osservatore da una qualsiasi galassia vede la stessa espansione → l’unica legge di espansione compatibile con il Principio Cosmologico Le fondamenta del modello del Big Bang 9 La scoperta dell’espansione dell’Universo – E. Hubble (1929) 9 Le abbondanze degli elementi leggeri: H, He, Li – G. Gamow (1948) Le abbondanze degli elementi (i primi 3 minuti) Bariogenesi QUARKS 1 secondo Barioni protoni, neutroni Leptoni elettroni, neutrini non avverrà MAI PIU’ nella storia dell’Universo Interazioni meno frequenti 100 secondi 1 neutrone ogni 7 protoni, fotoni 7 Formazione dei nuclei atomici H, He Gamow: La radiazione del Big Bang sopravvive ma a causa dell’espansione si raffredda 1 Previsione di Gamow: Radiazione “fossile” = 5 K Æ -268 °C due neutroni formano 1 nucleo di He 25% He 75% H Le fondamenta del modello del Big Bang 9 La scoperta dell’espansione dell’Universo – E. Hubble (1929) 9 Le abbondanze degli elementi leggeri: H, He, Li – G. Gamow (1948) 9 La scoperta della radiazione di fondo cosmico (CMB) – Penzias e Wilson (1965) Radiazione Fossile del Big Bang Viene scoperta da Penzias e Wilson (1965) Temperatura della radiazione misurata: 3 K (banda delle micro-onde) Riempie uniformemente il cielo! nessuna sorgente astrofisica sarebbe in grado di produrre una radiazione così uniforme! L’immagine più antica dell’Universo 380’000 anni dopo il Big Bang la radiazione si “libera” dalla materia ed inizia a propagarsi Spettro della Radiazione La radiazione fossile mantiene “memoria” dello stato dell’Universo quando aveva lo 0.003% della sua età attuale ... e il lato oscuro dell’Universo? Il miglioramento delle tecniche sperimentali ha permesso di ottenere informazioni anche sul lato oscuro dell’Universo La radiazione cosmica di fondo ha permesso di studiare il valore della densità totale dell’Universo (Ω= ρ/ρ0) e i diversi contributi ad essa. SN 1987A vista dal telescopio Hubble La verifica della legge di Hubble su scala sempre più grande permette di avere informazioni sull’espansione accelerata → costante cosmologica ed energia oscura La nucleosintesi primordiale ha permesso di studiare quanti barioni ci sono oggi nell’Universo → necessità di materia oscura Fluttuazione nella radiazione fossile: gli embrioni delle galassie (T2-T1)/T1=3×10-5 Immagine a tutto cielo dell’Universo 380000 anni dopo il Big Bang. Le fluttuazioni di temperatura sono la traccia di fluttuazioni di densità della materia: gli embrioni delle galassie che cresceranno attraverso l’amplificazione gravitazionale Nel 1992, COBE rivelò per primo piccole fluttuazioni di temperatura (indicate da variazioni di colore) WMAP WMAP nel 2003 ha messo a fuoco l’immagine data da COBE WMAP Se Ω =1, è prevista la presenza di un picco a l ∼ 200 Composizione dell’Universo (barioni) Parametro di densità: Ω = densità/densità critica 6 atomi di H/m3 La teoria cosmologica del Big Bang prevede, negli scenari teorici più accreditati, Ω=1. Verifica dalle misure sulla anisotropia di CMB Ω = 1 Barioni (cioè protoni, nuclei e atomi): Considerando: a) la presente abbondanza di nuclei leggeri b) la densità dei fotoni CMB ΩB = 4% E’ necessaria Materia Oscura Non Barionica: - particelle relitte dall’Universo primordiale - relativistiche (Hot DM) o non-relativistiche (Cold DM) al tempo del disaccoppiamento - Hot DM: neutrinos - Cold DM: WIMPs, axions, axion-like, ... Composizione dell’Universo (energia oscura) Negli ultimi 10 anni, studio della legge di Hubble su scala sempre più grande, attraverso l’utilizzo di “candele standard”: supernovae Ia (SN Ia). informazioni sull’espansione accelerata → costante cosmologica ed energia oscura energia del vuoto caratterizzata da una pressione negativa Ω Λ ≈ 0.73; Universo dominato da Λ Ω M ≈ 0.27 Contributo della materia (oscura e non) Universo dominato dalla materia oscura “Concordance model” Ω = ΩΛ + ΩM = 1.02±0.02 Ω = densità/densità critica 6 atomi di H/m3 Supernovae IA ΩΛ ≈ 0.73 ΩM ≈ 0.27 The Universe is flat WMAP Primordial Nucleosynthesis The baryons give “too small” contribution Observations on: • light nuclei abundance • microlensings Structure formation • visible light. in the Universe Ωbb∼∼4% 4% Ω ΩCDM 23%, Ω CDM∼∼23%, Non baryonic Cold Dark % ΩHDM,ν HDM,ν<<11% Ω Matter is dominant ∼ 90% of the matter in the Universe is non baryonic A large part of the Universe is in form of non baryonic Cold Dark Matter particles Relic CDM particles from primordial Universe Light candidates: axion, axion-like produced at rest (no positive results from direct searches for relic axions with resonant cavity) axion-like (light pseudoscalar and scalar candidates) Heavy candidates: • • • • • • • • In thermal equilibrium in the early stage of Universe Non relativistic at decoupling time <σann.v> ~ 10-26/ΩWIMPh2 cm3s-1 → σordinary matter ~ σweak Expected flux: Φ ~ 107 . (GeV/mW) cm-2 s-1 (0.2<ρhalo<1.7 GeV cm-3) Form a dissipationless gas trapped in the gravitational field of the Galaxy (v ~10-3c) neutral stable (or with half life ~ age of Universe) massive weakly interacting self-interacting dark matter the sneutrino in the Smith & and Weiner scenario SUSY (R-parity conserved → LSP is stable) neutralino or sneutrino a heavy ν of the 4-th family mirror dark matter Kaluza-Klein particles (LKK) heavy exotic canditates, as “4th family atoms”, ... even a suitable particle not yet foreseen by theories µ Indirect detection DM particles may accumulate in Sun/Earth, in galactic halo ↓ annihilate ↓ high energy neutrinos, g’s, anti-p and e+ ↓ Search for an excess over the (largely unknown) background antimatter signature • Search for antimatter excess in cosmic rays • Space detectors γ signature • Search for quasimonoenergetic γ’s in cosmic rays • Space detectors EARTH detector DMp DMp νµ DMp DMp DMp DMpantiDMp SUN νµ signature • Best signature from νµ producing up-ward going µ • Underground, underwater, underice detectors Similar searches can offer only results, which strongly depend on the background modeling and on the astrophysical, particle and nuclear Physics assumptions La rivelazione diretta delle particelle di Materia Oscura Diffusione su nuclei-bersaglio • Questa tecnica si basa (principalmente) sullo studio dell’interazione elastica delle particelle di DM con i nuclei che costituiscono il rivelatore utilizzato. DMp DMp Nucleo • A seguito di una interazione elastica di una particella con un nucleo, questo rincula. Energia di rinculo • L’energia di rinculo del nucleo è, quindi, la grandezza misurata. • Si possono utilizzare rivelatori a scintillazione (NaI(Tl), LXe, CaF2(Eu),etc.), a ionizzazione (Ge, Si), Bolometri (TeO2, Ge) Conversione in radiazione elettromagnetica • A seguito della conversione della particella nell’interazione con il nucleo, vengono prodotti γ, raggi-X o e- con energia circa uguale alla sua massa Diffusione elastica sul nucleo con eccitazione di elettroni legati • Si misura l’energia di rinculo del nucleo e la radiazione e.m. prodotta a X-ray γ eNOTA: i segnali prodotti da questi candidati sono perduti in esperimenti basati sulle procedure di reiezione del fondo elettromagnetico Main recipes for the Dark Matter particle direct detection • Underground site • Low bckg hard shields against γ’s, neutrons Reduction from the underground site • Lowering bckg: selection of materials, purifications, growing techniques, ... • Rn removal systems Background sources - Background at LNGS: muons → neutrons → Radon in the hall → 0.6 µ/(m2h) 1.08·10-6 n/(cm2s) thermal 1.98·10-6 n/(cm2s) epithermal 0.09·10-6 n/(cm2s) fast (>2.5 MeV) ≈30 Bq/m3 Example of background reduction during many years of work - Internal Background: selected materials (Ge, NaI, AAS, MS, ...) Shielding Example of the effect of a passive shield Passive shield: Lead (Boliden [< 30 Bq/kg from 210Pb], LC2 [<0.3 Bq/kg from 210Pb], lead from old roman galena), OFHC Copper, Neutron shield (low A materials, n-absorber foils) Active shield: Low radio-activity NaI(Tl) surrounding the detectors The “traditional” approach several assumptions and modeling required Exclusion plot σnucleus • Experimental vs Expected spectra (with or without bckg rejection ) Excluded at given C.L. + experimental and theoretical uncertainties generally not included in calculations MW by model: σp An exclusion plot not an absolute limit. When different target nuclei, no absolute comparison possible. • No discovery potentiality • Uncertainties in the exclusion plots and in their comparison • Warning: limitations in the recoil/background discrimination (always not event by event): PSD (τ of the pulse depends on the particle) in scintillators (NaI(Tl), LXe), Heat/Ionization (Ge), Heat/Scintillation (CaF2(Eu), CaWO4). To have a potentiality of discovery a model independent signature is needed ! A model independent signature is needed Directionality Correlation of nuclear recoil track with Earth's galactic motion due to the distribution of Dark Matter particles velocities very hard to realize Nuclear-inelastic scattering Detection of γ’s emitted by excited nucleus after a nuclearinelastic scattering. very large exposure and very low counting rates hard to realize Diurnal modulation Daily variation of the interaction rate due to different Earth depth crossed by the Dark Annual modulation Annual variation Matter particles of the interaction rate due to Earth only for high σ motion around the Sun. at present the only feasible one The annual modulation: a model independent signature for the investigation of Dark Matter particles component in the galactic halo With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, lowradioactive set-up with an efficient control of the running conditions would point out its presence. Drukier, Freese, Spergel PRD86 Freese et al. PRD88 30 ~ km 232 /s June 30 k m/ km December /s • vsun ~ 232 km/s (Sun velocity in the halo) • vorb = 30 km/s (Earth velocity around the Sun) • γ = π/3 • ω = 2π/T T = 1 year • t0 = 2nd June (when v⊕ is maximum) v⊕(t) = vsun + vorb cosγcos[ω(t-t0)] 60° s Requirements of the annual modulation S k [η (t )] = ∫ ∆E k dR dER ≅ S 0,k +S m ,k cos[ω (t − t0 )] dER Expected rate in given energy bin changes because the annual motion of the Earth around the Sun moving in the Galaxy 1) Modulated rate according cosine 2) In a definite low energy range 3) With a proper period (1 year) 4) With proper phase (about 2 June) 5) For single hit events in a multi-detector set-up 6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios To mimic this signature, spurious effects and side reactions must not only - obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements Roma2,Roma1,LNGS,IHEP/Beijing DAMA/LXe DAMA/R&D low bckg DAMA/Ge for sampling meas. DAMA/NaI DAMA/LIBRA http://people.roma2.infn.it/dama DAMA/LXe: results on rare processes NIMA482(2002)728 Dark Matter Investigation • Limits on recoils investigating the DMp-129Xe elastic scattering by means of PSD PLB436(1998)379 PLB387(1996)222, NJP2(2000)15.1 • Limits on DMp-129Xe inelastic scattering PLB436(1998)379, EPJdirectC11(2001)1 • Neutron calibration • 129Xe vs 136Xe by using PSD → SD vs SI signals to increase the sensitivity on the SD component foreseen/in progress Other rare processes: Astrop.Phys5(1996)217 • Electron decay into invisible channels 129 Xe during CNC processes PLB465(1999)315 • Nuclear level excitation of • N, NN decay into invisible channels in 129Xe PLB493(2000)12 • Electron decay: e- → νeγ PRD61(2000)117301 • 2β decay in 134Xe PLB527(2002)182 • Improved results on 2β in 134Xe,136Xe • CNC decay 136Xe → 136Cs • N, NN, NNN decay into invisible channels in PLB546(2002)23 Beyond the Desert (2003) 365 136Xe EPJA27 s01 (2006) 35 DAMA/R&D set-up: results on rare processes • Particle Dark Matter search with CaF2(Eu) NPB563(1999)97, Astrop.Phys.7(1997)73 2β decay in 136Ce and in 142Ce 2EC2ν 40Ca decay 2β decay in 46Ca and in 40Ca 2β+ decay in 106Cd 2β and β decay in 48Ca 2EC2ν in 136Ce, in 138Ce and α decay in 142Ce • 2β+ 0ν and EC β+ 0ν decay in 130Ba • Cluster decay in LaCl3(Ce) • • • • • • Il Nuov.Cim.A110(1997)189 Astrop. Phys. 7(1999)73 NPB563(1999)97 Astrop.Phys.10(1999)115 NPA705(2002)29 NIMA498(2003)352 NIMA525(2004)535 NIMA555(2005)270 Il Nuovo Cim. A112 (1999) 545-575, EPJC18(2000)283, Riv. N. Cim. 26 n.1 (2003)1-73, IJMPD13(2004)2127 • Reduced standard contaminants (e.g. U/Th of order of ppt) by material selection and growth/handling protocols. • PMTs: Each crystal coupled - through 10cm long tetrasil-B light guides acting as optical windows - to 2 low background EMI9265B53/FL (special development) 3” diameter PMTs working in coincidence. • Detectors inside a sealed Cu box maintained in HP Nitrogen atmosphere in slight overpressure • Very low radioactive shields: 10 cm of Cu, 15 cm of Pb + shield from neutrons: Cd foils + polyethylene/paraffin+ ~ 1 m concrete moderator largely surrounding the set-up • Installation sealed: A plexiglas box encloses the whole shield and is also maintained in HP Nitrogen atmosphere in slight overpressure. Walls, floor, etc. of inner installation sealed by Supronyl (2×10-11 cm2/s permeability).Three levels of sealing. • Installation in air conditioning + huge heat capacity of shield • Calibration using the upper glove-box (equipped with compensation chamber) in HP Nitrogen atmosphere in slight overpressure calibration → in the same running conditions as the production runs. • Energy and threshold: Each PMT works at single photoelectron level. Energy threshold: 2 keV (from X-ray and Compton electron calibrations in the keV range and from the features of the noise rejection and efficiencies). Data collected from low energy up to MeV region, despite the hardware optimization was done for the low energy • Pulse shape recorded over 3250 ns by Transient Digitizers. • Monitoring and alarm system continuously operating by self-controlled computer processes. + electronics and DAQ fully renewed in summer 2000 Main procedures of the DAMA data taking for the DMp annual modulation signature • data taking of each annual cycle starts from autumn/winter (when cosω(t-t0)≈0) toward summer (maximum expected). • routine calibrations for energy scale determination, for acceptance windows efficiencies by means of radioactive sources each ~ 10 days collecting typically ~105 evts/keV/detector + intrinsic calibration from 210Pb (~ 7 days periods) + periodical Compton calibrations, etc. • continuous onon-line monitoring of all the running parameters with automatic alarm to operator if any out of allowed range. DAMA/NaI(Tl)~100 kg Performances: N.Cim.A112(1999)545-575, EPJC18(2000)283, Riv.N.Cim.26 n. 1(2003)1-73, IJMPD13(2004)2127 Results on rare processes: • Possible Pauli exclusion principle violation PLB408(1997)439 • CNC processes PRC60(1999)065501 • Electron stability and non-paulian transitions in Iodine atoms (by L-shell) PLB460(1999)235 • Search for solar axions PLB515(2001)6 • Exotic Matter search EPJdirect C14(2002)1 • Search for superdense nuclear matter EPJA23(2005)7 • Search for heavy clusters decays EPJA24(2005)51 Results on DM particles: PLB389(1996)757 • PSD • Investigation on diurnal effect N.Cim.A112(1999)1541 PRL83(1999)4918 • Exotic Dark Matter search • Annual Modulation Signature PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512, PLB480(2000)23,EPJ C18(2000)283, PLB509(2001)197, EPJ C23 (2002)61, PRD66(2002)043503, Riv.N.Cim.26 n.1 (2003)1-73, IJMPD13(2004)2127, IJMPA21(2006)1445), EPJC47(2006)263 data taking completed on July 2002 total exposure collected in 7 annual cycles 107731 kg×d Final model independent result by DAMA/NaI Experimental residual rate of the single hit events in 2-6 keV over 7 annual cycles 7 annual cycles: total exposure ~ 1.1 x 105 kg×d Riv. N. Cim. 26 n. 1 (2003) 1-73, IJMPD 13 (2004) 2127 Power spectrum 2-6 keV experimental residual rate of the multiple hit events (DAMA/NaI-6 and 7) in the 2-6 keV energy interval: A = -(3.9±7.9) ·10-4 cpd/kg/keV 2-6 keV 6-14 keV Time (day) Acos[ω(t-t0)] P(A=0) = 7⋅10-4 Solid line: t0 = 152.5 days, T = 1.00 years from the fit: A = (0.0192 ± 0.0031) cpd/kg/keV from the fit with all the parameters free: A = (0.0200 ± 0.0032) cpd/kg/keV t0 = (140 ± 22) d T = (1.00 ± 0.01) y All the peculiarities of the signature satisfied Principal mode → 2.737 · 10-3 d-1 ≈ 1 y-1 experimental residual rate of the single hit events (DAMA/NaI-1 to 7) in the 2-6 keV energy interval: A = (0.0195±0.0031) cpd/kg/keV Multiple hits events = Dark Matter particle “switched off” No systematics or side reaction able to account for the measured modulation amplitude and to satisfy all the peculiarities of the signature model independent evidence of a particle Dark Matter 6.3σ component in the galactic halo at 6.3 σ C.L. What we can also learn from the multiple/single hit rates. A toy model A A’ Rmult N σ = Rsingle ⋅ T 2T 4πr What about the nuclear cross sections of the particle (A) responsible of the modulation in the single-hit rate and not in the multiple-hit rate? N T σ T = N Naσ Na + N I σ I = N ⋅ (σ Na + σ I ) The 8 NaI(Tl) detectors in (anti-)coincidence have 3.1×1026 nuclei of Na and 3.1×1026 nuclei of Iodine. N= 3.1×1026 Rmult N ⋅ (σ Na + σ I ) ≈ Rsingle ⋅ 2 4π ⋅ rmed rmed ∼ 10-15 cm Therefore, the ratio of the modulation amplitudes is: From the experimental data: Hence: Amult N ⋅ (σ Na + σ I ) ≈ 2 Asingle 4π ⋅ rmed Amult ≈ −(4 ± 8) ⋅10 −4 cpd/kg/keV < 10 −3 cpd/kg/keV; Asingle ≈ 2 ⋅10 −2 cpd/kg/keV; Amult < 5 ⋅10 − 2 Asingle In conclusion, the particle (A) responsible of the modulation in the single-hit rate and not in the multiple-hit rate must have: σ Na + σ I < 0.2 barn Since for fast neutrons the sum of the two cross sections (weighted by 1/E, ENDF/B-VI) is about 4 barns: It (A) cannot be a fast neutron Running conditions Temperature Nitrogen Flux an example: DAMA/NaI-6 hardware rate Distribution of some parameters Radon outside the shield Pressure Running conditions stable at level < 1% Modulation amplitudes obtained by fitting the time behaviours of main running parameters, acquired with the production data, when including a modulation term as in the Dark Matter particles case. outside the shield All the measured amplitudes well compatible with zero + none can account for the observed effect (to mimic such signature, spurious effects and side reactions must not only be able to account for the whole observed modulation amplitude, but also simultaneously satisfy all the 6 requirements) [for details and for the other annual cycles see for example: PLB424(1998)195, PLB450(1999)448, PLB480(2000)23, RNC26(2003)1-73, EPJC18(2000)283, IJMPD13(2004)2127] Can a hypothetical background modulation account for the observed effect? Integral rate at higher energy (above 90 keV), R90 • R90 percentage variations with respect to their mean values for single crystal in the DAMA/NaI-5,6,7 running periods → cumulative gaussian behaviour with σ ≈ 0.9%, fully accounted by statistical considerations Period Mod. Ampl. • Fitting the behaviour with time, adding a term modulated according DAMA/NaI-5 (0.09±0.32) cpd/kg DAMA/NaI-6 (0.06±0.33) cpd/kg period and phase expected for DAMA/NaI-7 -(0.03±0.32) cpd/kg Dark Matter particles: →consistent with zero + if a modulation present in the whole energy spectrum at the level found in the lowest energy region → R90 ∼ tens cpd/kg → ∼ 100 σ far away Energy regions closer to that where the effect is observed e.g.: Mod. Ampl. (6-10 keV): -(0.0076 ± 0.0065), (0.0012 ± 0.0059) and (0.0035 ± 0.0058) cpd/kg/keV for DAMA/NaI-5, DAMA/NaI-6 and DAMA/NaI-7; → they can be considered statistically consistent with zero In the same energy region where the effect is observed: no modulation of the multiple-hits events (see elsewhere) No Nomodulation modulationin inthe thebackground: background: these results also account for the bckg these results also account for the bckgcomponent componentdue dueto toneutrons neutrons Summary of the results obtained in the investigations of possible systematics or side reactions (see Riv. N. Cim. 26 n. 1 (2003) 1-73, IJMPD13(2004)2127 and references therein) Source Main comment RADON TEMPERATURE NOISE ENERGY SCALE Sealed Cu box in HP Nitrogen atmosphere,etc Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded Effective noise rejection Periodical calibrations + continuous monitoring of 210Pb peak Cautious upper limit (90%C.L.) <0.2% Smobs <0.5% Smobs <1% Smobs <1% Smobs EFFICIENCIES BACKGROUND Regularly measured by dedicated calibrations <1% Smobs No modulation observed above 6 keV + this limit <0.5% Smobs includes possible effect of thermal and fast neutrons + no modulation observed in the multiple-hits events in 2-6 keV region SIDE REACTIONS Muon flux variation measured by MACRO <0.3% Smobs + even if larger they cannot satisfy all the requirements of annual modulation signature Thus, they can not mimic the observed annual modulation effect Summary of the DAMA/NaI Model Independent result Presence of modulation for 7 annual cycles at ~6.3σ C.L. with the proper distinctive features of the signature; all the features satisfied by the data over 7 independent experiments of 1 year each one Absence of known sources of possible systematics and side processes able to quantitatively account for the observed effect and to contemporaneously satisfy the many peculiarities of the signature No other experiment whose result can be directly compared in model independent way is available so far To investigate the nature and coupling with ordinary matter of the possible DM candidate(s), effective energy and time correlation analysis of the events has to be performed within given model frameworks Corollary quests for candidate(s) astrophysical models: ρDM, velocity distribution and its parameters nuclear and particle Physics models + experimental parameters e.g. for WIMP class particles: SI, SD, mixed SI&SD, preferred inelastic, scaling laws on cross sections, form factors and related parameters, spin factors, halo models, etc. + different scenarios + multi-component? THUS uncertainties on models and comparisons First case: the case of DM particle scatterings on target-nuclei. The recoil energy is the detected quantity DM particle-nucleus elastic scattering SI+SD differential cross sections: gp,n(ap,n) effective DM particle-nucleon couplings ⎛ dσ ⎞ ⎛ dσ ⎟ + ⎜ dσ ⎞⎟ = (v,ER ) = ⎜ dER ⎝ dER ⎠ SI ⎝ dER ⎠ SD 2 F [ 2 2 J +1 2G mN ⎧ a p Sp + an Sn ⎨ Zgp + (A− Z)gn FSI (ER ) + 8 2 J πv ⎩ [ ] ] F (E )⎬⎭⎫ 2 2 SD R <Sp,n> nucleon spin in the nucleus F2(ER) nuclear form factors mWp reduced DM particle-nucleon mass Note: not universal description. Scaling laws assumed to define point-like cross sections from nuclear a ones. Four free parameters: mW, σSI, σSD , tgθ = n ap Preferred inelastic DM particle-nucleus scattering: χ-+N→ χ++N • DM particle candidate suggested by D. Smith and N. Weiner (PRD64(2001)043502) • Two mass states χ+ , χ- with δ mass splitting • Kinematical constraint for the inelastic scattering of χ- on a nucleus with mass mN becomes increasingly severe for low mN 2δ 1 2 µv ≥ δ ⇔ v ≥ vthr = 2 µ Three free parameters: mW, σp, δ Ex. Sm/S0 enhanced with respect to the elastic scattering case mW =100 GeV mN µ 70 41 130 57 Differential energy distribution depends on the assumed scaling laws, nuclear form factors, spin factors, free parameters (→ kind of coupling, mixed SI&SD, pure SI, pure SD, pure SD through Z0 exchange, pure SD with dominant coupling on proton, pure SD with dominant coupling on neutron, preferred inelastic, ...), on the assumed astrophysical model (halo model, presence of non-thermalized components, particle velocity distribution, particle density in the halo, ...) and on instrumental quantities (quenching factors, energy resolution, efficiency, ...) Spin Independent Examples of different Form −α (qr ) −α (qr ) from Helm Ae + (1 − A ) e 127 I available −(qrn )2 /5 Factor for e Helm in literature 1 Similar situation for all the target nuclei considered in the field 2 2 n 2 charge spherical distribution • Take into account the structure of target nuclei • In SD form factor: no decoupling between nuclear and Dark Matter particles degrees of freedom; dependence on nuclear potential. n −( qrn )2 /5 e 2 −α1(qrn ) Ae Spin Dependent from −α2 (qrn )2 +(1− A)e “thin shell” distribution Smith et al., Astrop.Phys.6(1996) 87 Ressell et al. The Spin Factor Spin Factors for some target-nuclei calculated in simple different models Spin Factors calculated on the basis of Ressell et al. for some of the possible θ values considering some target nuclei and two different nuclear potentials Spin factor = Λ2J(J+1)/ax2 (ax= an or ap depending on the unpaired nucleon) Spin factor = Λ2J(J+1)/a2 tgθ = Large differences in the measured counting rate can be expected: an ap (0≤θ<π) • when using target nuclei sensitive to the SD component of the interaction (such as e.g. 23Na and 127I) with the respect to those largely insensitive to such a coupling (such as e.g. natGe, natSi, natAr, natCa, natW, natO); • when using different target nuclei although all – in principle – sensitive to such a coupling, depending on the unpaired nucleon (compare e.g. odd spin isotopes of Xe, Te, Ge, Si, W with the 23Na and 127I cases). Quenching factor recoil/electron response ratio measured with a neutron source or at a neutron generator Quenching factors, q, measured by neutron sources or by neutron beams for some detectors and nuclei Ex. of different q determinations for Ge Astrop. Phys.3(1995)361 • differences are often present in different experimental determinations of q for the same nuclei in the same kind of detector • e.g. in doped scintillators q depends on dopant and on the impurities/trace contaminants; in LXe e.g.on trace impurities, on initial UHV, on presence of degassing/releasing materials in the Xe, on thermodynamical conditions, on possibly applied electric field, etc. • Some time increases at low energy in scintillators (dL/dx) assumed 1 (but 0.91 ± 0.03 in astro-ph/0607502 ) Consistent Halo Models • Isothermal sphere ⇒ very simple but unphysical halo model; generally not considered • Several approaches different from the isothermal sphere model: Vergados PR83(1998)3597, PRD62(2000)023519; Belli et al. PRD61(2000)023512; PRD66(2002)043503; Ullio & Kamionkowski JHEP03(2001)049; Green PRD63(2001) 043005, Vergados & Owen astroph/0203293, etc. Models accounted in the following (Riv. N. Cim. 26 n.1 (2003)1-73 and previously in PRD66(2002)043503 ) • Needed quantities → DM local density ρ0 = ρDM (R0 = 8.5 kpc) → local velocity v0 = vrot (R0 = 8.5kpc) r → velocity distribution f (v ) • Allowed ranges of ρ0 (GeV/cm3) have been evaluated for v0=170,220,270 km/s, for each considered halo density profile and taking into account the astrophysical constraints: v0 = (220± 50)km⋅ s −1 1⋅1010 M ⊕ ≤ M vis ≤ 6 ⋅1010 M ⊕ 0.8 ⋅ v0 ≤ vrot (r = 100kpc) ≤ 1.2 ⋅ v0 NOT YET EXHAUSTIVE AT ALL Halo modeling • Needed quantities for Dark Matter direct searches: → DM local density ρ0 = ρDM (R0 = 8.5 kpc) → local velocity v0 = vrot (R0 = 8.5kpc) r → velocity distribution f (v ) Axisymmetric ρDM → q flatness Isothermal sphere: the most widely used (but not correct) model density profile: ρ DM (r ) ∝ r −2 2 gravitational potential: Ψ 0 ∝ log(r ) Ψ 0 (r , z ) = − → Maxwellian velocity distribution Spherical ρDM, isotropic velocity dispersion Evans’ logarithmic ρ DM (r ) = v 3R + r 4π G ( Rc2 + r 2 ) 2 2 0 2 c 2 Ψ 0 (r ) = − Triaxial ρDM → p,q,δ 2 0 v log( Rc2 + r 2 ) 2 2 (r ) = vc2 vrot 2 r (R + r 2 ) 2 c Evans’ βΨ a Rcβ 3Rc2 + r 2 (1 − β ) Ψ a Rcβ βΨ a Rcβ r 2 2 ρ Ψ ( ) = , ( β ≠ 0) ( ) ( r ) = r v r = 0 rot power-law DM ( Rc2 + r 2 ) β / 2 ( Rc2 + r 2 )( β + 2) / 2 4π G ( Rc2 + r 2 )( β + 4) / 2 γ Others: α ⎛ R ⎞ ⎡1 + ( R0 / a) ⎤ ρ DM (r ) = ρ 0 ⎜ 0 ⎟ ⎢ α ⎥ ⎝ r ⎠ ⎣ 1 + (r / a) ⎦ ( β −γ ) / α Spherical ρDM with non-isotropic velocity dispersion → Constraining the models ⎛ v02 z2 ⎞ log ⎜ Rc2 + r 2 + 2 ⎟ q ⎠ 2 ⎝ v0 = (220 ± 50)km ⋅ s −1 β0 = 1 − vφ2 vr2 1 ⋅1010 M ⊕ ≤ M vis ≤ 6 ⋅1010 M ⊕ ⎛ 2 y2 z2 ⎞ v02 Ψ 0 ( x, y, z ) = − log ⎜ x + 2 + 2 ⎟ 2 p q ⎠ ⎝ δ = free parameter → in spherical limit (p=q=1) quantifies the anisotropy of the velocity dispersion tensor vφ2 2 r v = 2 +δ 2 0.8 ⋅ v0 ≤ vrot (r = 100kpc) ≤ 1.2 ⋅ v0 Few examples of corollary quests for the WIMP class (Riv. N.Cim. vol.26 n.1. (2003) 1-73, IJMPD13(2004)2127) DM particle with elastic SI&SD interactions (Na and I are fully sensitive to SD interaction, on the contrary of e.g. Ge and Si) Examples of slices of the allowed volume in the space (ξσSI, ξσSD, mW, θ) for some of the possible θ (tgθ =an/ap with 0≤θ<π) and mW DM particle with dominant SI coupling Region of interest for a neutralino in supersymmetric schemes where assumption on gaugino-mass unification at GUT is released and for “generic” DM particle not exhaustive + different scenarios? Most of these allowed volumes/regions are unexplorable e.g. by Ge, Si,TeO2, Ar, Xe, CaWO4 targets Model dependent lower bound on neutralino mass as derived from LEP data in supersymmetric schemes based on GUT assumptions (DPP2003) higher mass region allowed for low v0, every set of parameters’ values and the halo models: Evans’ logarithmic C1 and C2 co-rotating, triaxial D2 and D4 non-rotating, Evans power-law B3 in setA DM particle with dominant SD coupling volume allowed in the space (mW, ξσSD,θ); here example of a slice for θ=π/4 (0≤θ<π) DM particle with preferred inelastic interaction: W + N → W* + N (Sm/S0 enhanced): examples of slices of the allowed volume in the space (ξσp, mW,δ) [e.g. Ge disfavoured] Regions above 200 GeV allowed for low v0, for every set of parameters’ values and for Evans’ logarithmic C2 corotating halo models An example of the effect induced by a non-zero SD component on the allowed SI regions • Example obtained considering Evans’ logarithmic axisymmetric C2 halo model with v0 = 170 km/s, ρ0 max at a given set of parameters • The different regions refer to different SD contributions with θ=0 a) σSD = 0 pb; c) σSD = 0.04 pb; e) σSD = 0.06 pb; b) σSD = 0.02 pb; d) σSD = 0.05 pb; f) σSD = 0.08 pb; A small SD contribution ⇒ drastically moves the allowed region in the plane (mW, ξσSI) towards lower SI cross sections (ξσSI < 10-6 pb) Similar effect for whatever considered model framework • There is no meaning in bare comparison between regions allowed in experiments sensitive to SD coupling and exclusion plots achieved by experiments that are not. • The same is when comparing regions allowed by experiments whose target-nuclei have unpaired proton with exclusion plots quoted by experiments using target-nuclei with unpaired neutron where θ ≈ 0 or θ ≈ π. Supersymmetric expectations in MSSM •Assuming for the neutralino a dominant purely SI coupling •when releasing the gaugino mass unification at GUT scale: M1/M2≠0.5 (<); (where M1 and M2 U(1) and SU(2) gaugino masses) low mass configurations are obtained figure taken from PRD69(2004)037302 scatter plot of theoretical configurations vs DAMA/NaI allowed region in the given model frameworks for the total DAMA/NaI exposure (area inside the green line); (for previous DAMA/NaI partial exposure see PRD68(2003)043506) Some open scenarios on astrophysical aspects In the galactic halo, fluxes of Dark Matter particles with dispersion velocity relatively low are expected: some relics of the hierarchical assembly of the Milky Way are already observed in the visible: Sagittarius dwarf galaxy since 1994, Canis Major galaxy early discovered… This scenario foreseen streams of Dark Matter particles with low velocity dispersion, very interesting for direct detection: Sm/S0 enhanced in A.M., new signature for streams La galassia “nana” Sagittario (Sgr) e l’alone di materia oscura… Nel 1994 –1995 e’ stato osservato un nuovo oggetto “Sagittarius Dwarf Elliptical Galaxy” nelle vicinanze della Via Lattea, nella direzione del centro galattico, ed in posizione opposta ad esso rispetto al Sistema Solare La direzione di moto della Sgr era molto diversa da quella degli altri oggetti luminosi nella Via Lattea, così si è scoperto che le stelle osservate appartenevano ad una galassia nana satellite della Via Lattea, che sta per essere catturata. La galassia nana ha assunto una forma molto allungata a causa delle forze di marea subite durante le circa 10 rivoluzioni effettuate attorno alla Via Lattea. La galassia sferoidale “nana” Sagittario, satellite della Via Lattea (Ibata et al. 1994) E’ atteso un flusso di particelle costituenti la materia oscura dell’alone galattico di Sgr, con velocità ortogonale al nostro piano galattico di circa 300 km/s. il Sole disterebbe pochi kpc dal centro della coda trainante...: da astro-ph/0309279: Densità dello stream attesa: [1 -- 80] 10-3 GeV/cm3 (0.3-25)% di ρhalo Velocità locale media dello stream ricavata dalle misure su 8 stelle locali attribuite alla coda trainante di Sgr: sgr (290±26) km/s nella direzione (l,b)=(116,-59): (Vx,Vy,Vz)=(-65±22, 135±12,-249±6)km/s Dispersione delle velocità: (σvx,σvy,σvz)=(63,33,17)km/s sun stream Altri stream di materia oscura da galassie satelliti della Via Lattea vicini al Sole? .....molto probabile.... Posizione del Sole: (-8,0,0)kpc E’ ipotizzato che le galassie a spirale come la Via Lattea si formano per cattura delle vicine galassie satelliti come la Sgr, Canis Major ecc… Canis Major simulation: Astro-ph/0311010 Ibata et al. ... investigating halo substructures by underground expt through annual modulation Possible contributions due to the tidal stream of Sagittarius Dwarf satellite (SagDEG) galaxy of Milky Way spherical EPJC47(2006)263 oblate sun stream Examples of the effect of SagDEG tail on the phase of the signal annual modulation V8* Vsph V obl Expected phase in the absence of streams t0 = 152.5 d (June 2nd) mW=70 GeV 160 140 NFW spherical isotropic non-rotating, v0 = 220km/s, ρ0max + 4% SagDEG NFW spherical isotropic non-rotating, v0 = 220km/s, ρ0min+ 4% SagDEG V8* from 8 local stars: PRD71(2005)043516 180 t0 (day) simulations from Ap.J.619(2005)807 Ex. NaI: 3 105 kg d 120 5 E (keVee) DAMA/NaI results: (2-6) keV t0 = (140±22) d 10 Investigating the effect of Sagittarius Dwarf satellite galaxy (SagDEG) for WIMPs EPJC47 (2006) 263 Possible contributions due to the tidal stream of Sagittarius Dwarf satellite (SagDEG) galaxy of Milky Way DAMA/NaI: seven annual cycles 107731 kg d for some SagDEG modelling Few examples stream sun pure SD case:examples of slices of the 3-dim allowed volume pure SI case green areas: no SagDEG The higher sensitivity of DAMA/LIBRA will allow to more effectively investigate the presence and the contributions of streams in the galactic halo Constraining the SagDEG stream by DAMA/NaI - 2 for different SagDEG velocity dispersions (20-40-60 km/s) EPJC47(2006)263 pure SI case pure SD case This analysis shows the possibility to investigate local halo features by annual modulation signature already at the level of sensitivity provided by DAMA/NaI, allowing to reach sensitivity to SagDEG density comparable with M/L evaluations. The higher sensitivity of DAMA/LIBRA will allow to more effectively investigate the presence and the contributions of streams in the galactic halo What about the indirect searches of DM particles in the space? It was already noticed in 1997 that the EGRET data showed an excess of gamma ray fluxes for energies above 1 GeV in the galactic disk and for all sky directions. The EGRET Excess of Diffuse Galactic Gamma Rays astro-ph/0211286 PLB536(2002)263 EGRET data, W.de Boer, hep-ph/0508108 interpretation, evidence itself, derived mW and cross sections depend e.g. on bckg modeling, on DM spatial velocity distribution in the galactic halo, etc. Hints from indirect searches are not in conflict with DAMA/NaI for the WIMP class candidate In next years new data from DAMA/LIBRA (direct detection) and from Agile, Glast, Ams2, Pamela, ... (indirect detections) ... not only neutralino, but also e.g. ... ... sneutrino, ... PLB536(2002)263 ... or Kaluza-Klein DM PRD70(2004)115004 ... or neutrino of 4th family hep-ph/0411093 Example of joint analysis of DAMA/NaI and positron/gamma’s excess in the space in the light of two DM particle components in the halo in the given frameworks in the given frameworks Another class of DM candidates: light bosonic particles IJMPA21 (2006) 1445 The detection is based on the total conversion of the absorbed bosonic mass into electromagnetic radiation. In these processes the target nuclear recoil is negligible and not involved in the detection process (i.e. signals from these candidates are lost in experiments applying rejection procedures of the electromagnetic contribution) Axion-like particles: similar phenomenology with ordinary matter as the axion, but significantly different values for mass and coupling constants allowed. A wide literature is available and various candidate particles have been and can be considered. A complete data analysis of the total 107731 kgxday exposure from DAMA/NaI has been performed for pseudoscalar (a) and scalar (h) candidates in some of the possible scenarios. Main processes involved in the detection: They can account for the DAMA/NaI observed effect as well as candidates belonging to the WIMPs class ,h ,h h a S0 S0,Sm S0,Sm h S0,Sm S0 S0,Sm The pseudoscalar case IJMPA21 (2006) 1445 Analysis of 107731 kg day exposure from DAMA/NaI. Allowed multi-dimensional volume in the space defined by ma and all coupling constants to charged fermions (3σ C.L.) in the given frameworks Maximum allowed photon coupling Axioelectric contribution dominant in all “natural” cases → allowed region almost independent on the other fermion coupling values only electron coupling coupling model cosmological interest: at least below Di Lella, Zioutas AP19(2003)145 UHECR - PRD64(2001)096005 Majoron as in PLB99(1981)411; coupling to photons vanish at first order: g aγγ ≈ 1 g 4 g α ⎡ g ae e ⎛ g ae e g ad d g 9 ad d 9 au u ⎤ 3 3 + + = = − au u ⎥ ≈ 0 ⎜⎜ ⎢ π ⎣ me md mu ⎦ md mu ⎝ me ⎞ ⎟⎟ ⎠ Also this can account for the DAMA/NaI observed effect The scalar case Allowed multi-dimensional volume in the space defined by mh and all the coupling constants to charged fermions (3σ C.L.) in the given frameworks IJMPA21(2006)1445 1) electron coupling does not provide modulation 2) from measured rate: ghee < 3 10-16 to 10-14 for mh ≈ 0.5 to 10 keV 3) coupling only to hadronic matter: allowed region in g h N N vs. mh (3σ C.L.) DAMA/NaI allowed region in the considered framework. If all the couplings to quarks of the same order: lifetime dominated by u and d loops: g hγγ ( ) ghNN = ghuu + 2ghdd + ( Z ghuu − ghdd A 2 1 g α ⎡4 g 2 α Qq g hq q 9 hd d ⎤ ≈ ∑− ≈ − 2 ⎢ 9 hu u + ⎥ 3 π mq π ⎣ mu md ⎦ q ) h configurations of cosmological interest in ghuu vs ghdd plane Many other configurations of cosmological interest are possible depending on the values of the couplings to other quarks and to gluons…. • Annual modulation signature present for a scalar particle with pure coupling to hadronic matter (possible gluon coupling at tree level?). • Compton-like to nucleus conversion is the dominant process for particle with cosmological lifetime. • Allowed by DAMA/NaI (for mh > 0.3 keV ) • τh > 15 Gy (lifetime of cosmological interest) • mu = 3.0 ± 1.5 MeV md = 6.0 ± 2.0 MeV Also this can account for the DAMA/NaI observed effect FAQ: ... DAMA/NaI “excluded” by CDMS-II (and others)? OBVIOUSLY NO They give a single model dependent result using natGe target DAMA/NaI gives a model independent result using 23Na and 127I targets Even assuming their expt. results as they give them … Case of DM particle scatterings on target-nuclei N in o d co dep ire m en ct pa d m ris en od on t el po ssi bl e •In general? OBVIOUSLY NO The results are fully “decoupled” either because of the different sensitivities to the various kinds of candidates, interactions and particle mass, or simply taking into account the large uncertainties in the astrophysical (realistic and consistent halo models, presence of non-thermalized components, particle velocity distribution, particle density in the halo, ...), nuclear (scaling laws, FFs, SF) and particle physics assumptions and in all the instrumental quantities (quenching factors, energy resolution, efficiency, ...) and theor. parameters. •At least in the purely SI coupling they only consider? OBVIOUSLY NO still room for compatibility either at low DM particle mass or simply accounting for the large uncertainties in the astrophysical, nuclear and particle physics assumptions and in all the expt. and theor. parameters. Case of bosonic candidate (full conversion into electromagnetic radiation) •These candidates are lost by these expts. OBVIOUSLY NO (see also in Riv. N. Cim. 26 n. 1(2003)1-73 and IJMPD13(2004)2127, several papers in literature, astro-ph/0511262) Thenew newDAMA/ DAMA/LIBRA set-up~250 ~250kg kgNaI(Tl NaI(Tl) The LIBRA set-up ) (Largesodium sodiumIodide IodideBulk Bulkfor forRAre RAreprocesses) processes) (Large As a result of a second generation R&D for more radiopure NaI(Tl) by exploiting new chemical/physical radiopurification techniques (all operations involving crystals and PMTs - including photos - in HP Nitrogen atmosphere) PMT +HV divider Cu etching with super- and ultrapure HCl solutions, dried and sealed in HP N2 storing new crystals improving installation and environment etching staff at work in clean room (all operations involving crystals and PMTs -including photos- in HP N2 atmosphere) detectors during installation; in the central and right up detectors the new shaped Cu shield surrounding light guides installing DAMA/LIBRADAMA/LIBRA detectors in data taking since March 2003, (acting also as optical windows) waiting for a larger exposure than DAMA/NaI assembling a DAMA/ LIBRA detector and PMTs was not yet applied filling the inner Cu box with further shield closing the Cu box housing the detectors view at end of detectors’ installation in the Cu box Some infos about DAMA/LIBRA data acquisition DAMA/LIBRA in operation since March 2003 e.g. up to March 2006: exposure: of order of 105 kg x d overall sources’ data: of order of 4 x 107 events Few examples of operational features (here from March 2003 to August 2005): Stability of the low energy calibration factors routine calibrations (all the detectors together) σ E σ=0.9% σ=0.4% frequency 241Am frequency ratio of the peaks’ positions Stability of the high energy calibration factors (60keV ) = 7.4% E (keV) tdcal − tdcal tdcal α ≈2 f HE − f HE f HE Perspectives of DAMA/LIBRA Model independent approach: reachable C.L. as function of running time and of the low energy bckg rate. The shaded regions account for several model frameworks. Example of corollary model dependent quests for the candidate particle in a single simplified model/analysis framework: e.g., role of the increase of statistics and of the improvement in the bckg rate to identify a SI/SD coupled WIMP candidate in a particular given model framework of the many possible Assumptions: • 1σ C.L. • v0=220km/s, fixed params • isothermal spherical halo • etc. • Allowed regions evaluated by simulating the response of the ~250 kg NaI(Tl) set-up to a WIMP having mW=60GeV, σSI=10-6 pb, σSD=0.8 pb and θ=2.435rad. • Various exposure times are considered (from 1 to 5y). • In each panel different bckg rate. More complete scenarios would be investigated and several uncertainties accounted for (see e.g. Riv.N.Cim.26n.1(2003)1-73) … other astrophysical scenarios? Possible non-thermalized multicomponent galactic halo? In the galactic halo, fluxes of Dark Matter particles with dispersion velocity relatively low are expected : Possible contribution due to the tidal stream of Sagittarius Dwarf satellite galaxy of Milky Way stream Possible presence of caustic rings ⇒ streams of Dark Matter particles sun K.Freese et al. astro-ph/0309279 Fu-Sin Ling et al. astro-ph/0405231 Interesting scenarios for DAMA Effect on |Sm/So| respect to “usually” adopted halo models? Effect on the phase of annual modulation signature? Canis Major simulation: astro-ph/0311010 Other dark matter stream from satellite galaxy of Milky Way close to the Sun? Position of the Sun: .....very likely.... (-8,0,0) kpc Can be guess that spiral galaxy like Milky Way have been formed capturing close satellite galaxy as Sgr, Canis Major, ecc… An example of possible signature for the presence of streams in the Galactic halo Phase (day of maximum) The effect of the streams on the phase depends on the galactic halo model Expected phase in the absence of streams t0 = 152.5 d (2nd June) Evans’log axisymmetric non-rotating, v0=220km/s, Rc= 5kpc, ρ0 max + 4% Sgr NFW spherical isotropic non-rotating, v0=220km/s, ρ0 max + 4% Sgr Example, NaI: 3 105 kg d The higher sensitivity of DAMA/LIBRA will allow to more effectively investigate the presence or contributions of streams E (keVee) in the galactic halo DAMA/NaI results: (2-6) keV t0 = (140 ± 22) d Conclusions Dark Matter investigation is a crucial challenge in the incoming years for cosmology and for physics beyond the standard model DAMA/NaI data show a 6.3σ C.L. model independent evidence for the presence of a Dark Matter particle component in the galactic halo Corollary model dependent quest for the candidate particle: • WIMP particles with mw~ (few GeV to TeV) with coupling pure SI or pure SD or mixed SI/SD as well as particles with preferred inelastic scattering (Riv.N.Cim. 26 n.1. (2003) 1-73, IJMPD 13 (2004) 2127) • several other particles suggested in literature by various authors (see literature) • bosonic particles with ma~ keV having pseudoscalar, scalar coupling (IJMPA21(2006)1445) • halo substructures (SagDEG) effects (EPJC 47 (2006) 263) • and more in progress... The presently running DAMA/LIBRA will allow to further increase the C.L. of the model independent result, to restrict the nature of the candidate and to investigate the phase space structure of the dark halo + a new R&D towards a possible ton set-up we proposed in 1996 in progress ... wait for more in the near future