UNIVERSITA’ DEGLI STUDI DI BARI FACOLTA’ DI SCIENZE MATEMATICHE FISICHE E NATURALI Studio dei segnali di trasduzione in cellule in vivo: applicazione della microscopia FRET The Fluorescence Process Stage 1: Excitation Stage 2: Excited-State Lifetime Stage 3: Fluorescence Emission The process responsible for the fluorescence properties of fluorescent probes and other fluorophores is illustrated by the simple electronic-state diagram called a Jablonski diagram. Excitation and Fluorescence Emission Spectra Shift di Stokes Fluorescence excitation spectrum Fluorescence emission spectrum The entire fluorescence process is cyclical. Different types of light and their associated wavelengths QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. Fluorescence excitation spectrum Fluorescence emission spectrum Probes for Proteins Probe FITC PE APC PerCP Cascade Blue Coumerin-phalloidin Texas Red Tetramethylrhodamine-amines CY3 CY5 Excitation 488 488 630 488 360 350 610 550 540 640 Emission 525 575 650 680 450 450 630 575 575 670 Probes for Nucleic Acids • Hoechst 33342 (AT rich) (uv) 346 460 • DAPI (uv) 359 461 • POPO-1 434 456 • YOYO-1 491 509 • Acridine Orange (RNA) 460 650 • Acridine Orange (DNA) 502 536 • Thiazole Orange (vis) 509 525 • TOTO-1 514 533 • Ethidium Bromide 526 604 • PI (uv/vis) 536 620 • 7-Aminoactinomycin D (7AAD) 555 655 GFP is from the chemiluminescent jellyfish Aequorea victoria Green Fluorescent Protein AEQUOREA VICTORIA GFP • Discovered as companion protein to Aequorin (blue fluorescent protein) • The components required for bioluminescence include a photoprotein, aequorin, that emits blue-green light, and an accessory green fluorescent protein (GFP), wich accepts energy from aequorin and re-emits it as green light Fluorescent protein spectral variants QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. emission 1.0 eGFP eCFP eYFP DsRed 0.5 0.0 400 450 500 550 600 nm 1.0 excitation 650 0.5 0.0 400 450 500 550 600 650 nm Fluorescent proteins as: QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. • probes to monitor proteins colocalization • molecular markers to track and quantify individual QuickT ime ™e un dec ompr esso re son o nece ssar ip er visu aliz zar e ques t'immagine . or multiple protein species (in vitro / in vivo) • photo-modulatable proteins to highlight and follow the fate of specific protein populations FRET • Permette l’osservazione di interazioni molecola-molecola nel range di nm • Trasferimento di energia non radiattivo da un fluorocromo (donatore) ad un altro (accettore) quando essi si trovano vicini tra loro (quenching) • Definito anche Förster Resonance Energy Transfer • Osservato per la prima volta proprio in Aequorea victoria tra aequorina e GFP QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. THE PRINCIPLE OF FRET 480 nm 480 nm 430 nm D Max 100 Å D 2) The probe A absorbs at 480nm and emits at 545nm 3) When these protein are brought in close proximity, energy transfer can occur (red row). A The probe D is excited by absorbing light at 430nm and transfers the energy to probe A. A 545 nm EM EX. . The probe D absorbes light at 430nm and emits light at 480nm 545 nm EX. EM . EX. EM . 430 nm 1) Now the probe A is excited and falls back to its ground state, thereby emitting light at 545nm. When D and A are in close proximity, the emission at 480 nm is decreased and the emission at 545nm is increased. FRET • Il FRET intramolecolare avviene quando sia donatore che accettore sono fusi con la stessa molecola che subisce una transizione (cambiamento di conformazione) L’efficienza di FRET dipende dall’orientamento relativo e dalla distanza tra donatore e accettore • Il FRET intermolecolare avviene tra una molecola (Protein A) fusa con il donatore e un’altra molecola (Protein B) fusa con l’accettore. Quando le due proteine interagiscono si osserva il fenomeno di FRET QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. GFP Mutants …..what are the best FRET partners? Primary conditions for FRET microscopy •Donor and Acceptor molecules must be in close proximity (tipically 10-100 A) •Donor and Acceptor transition dipole orientations must be approximately parallel •Absorption spectrum of the acceptor must overlap the fluorescence emission spectrum of the donor (see figure on the left) Known FRET pairs are CFP/YFP, BFP/GFP, GFP/Rhodamine, FITC/ Cy3 Fluorescence resonance energy transfer CFP YFP Exc: 430 nm Em: 480 nm Exc:475 nm Em: 545 nm FRET • Alle cellule vengono fatte esprimere le proteine di interesse attraverso una singola trasfezione (intramolecolare) o una cotrasfezione (intermolecolare). • Per osservare il fenomeno di FRET il campione viene eccitato nella λ di eccitazione del donatore • Si registra il segnale emesso dal campione sia nella λ di emissione del donatore che dell’accettore. Se vi sono le condizioni ideali si osserva una diminuzione del segnale relativo al donatore ed un aumento di quello relativo all’accettore. QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. FRET MICROSCOPE Beamsplitter (2 Detectors) sample objective QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine. Excitation CFP (430 nm) Dicroic (455 nm) Detector CFP Emission CFP (480nm) Dicroic (505 nm) Emission YFP (545) Detector YFP (FRET) The ratio of Donor to Acceptor emission has been used as an index of the extent of FRET FRET FRET 430 nm nm 430 FRET APPLICATIONS: Variations in membrane potential Protease activity Variations in intracellular Ca2+ and cAMP levels Conformational protein changes Protein-protein interactions Cyclic AMP signalling From: G.M. Fimia and P. Sassone-Corsi, Journal of Cell Science 2001 Invasive signals from the microenvironment act as inducer of tumor progression Cell migration in tumors •Collective motility (solid cell strands, sheets, files and clusters) •Amoeboid motility Leading-edge rich in small pseudopodia (shape-driven migration Trailing uropodia Ellipsoid cell body path finding) •Mesenchimal motility Extrinsic factors from the elongated and adhesive phenotipe Surface protease Leading-edge Direction of movement pseudopodia path generation microenvironment can promote tumor motility! MCF10-A Normal, human breast cell line MDA-MB-435 Human breast metastatic cell line Invasion specific Signal Transduction cascade Increased invasive capacity (+) cAMP NHE1 p38 PKA P RhoA ROCK Serum deprivation redistributes total RhoA, phospho RhoA, NHE1 in to MDA-MB-435 pseudopodial compartment Are the mobilization of cAMP and activation of PKA localized to the leading edge pseusopodia of cancer cells? NHE1 Local pool of cAMP? p38 Local pool of PKA? P ROCK RhoA How this cAMP-mediated signalling is modulated by invasion promoting stimuli? THE cAMP SENSOR IS A CHIMAERIC PROTEIN KINASE A 535nm FRET YFP CFP 535nm CAT CAT CAT YFP R FRET R CFP 480nm 430nm 430nm 480nm GPCR g a b AC ATP cAMP Inactive PKA CAT CAT R CAT R GPCR g a AC b CAT Active PKA CAT R R How is it possible to measure cAMP with FRET? FRET YFP CFP CAT CAT CAT YFP R Low cAMP 430nm R CFP 430nm FRET YFP YFP CAT CAT CA CA YFP T T CFP CFP cAMP R R 430nm R Reg. CA YFP T CF R P CFP 430nm Zaccolo M. et al., Science ,2002. cAMP sensors based on PKA pBI-cRII-ycat YFP RII CAT CFP c pBI-RII-myrpalm YFP CAT c mp RII CFP EPAC H30 Ponsioen et al. EMBO Rep. 2004 December; 5(12): 1176–1180 myrpalm HBE cytosolic HBE A-Kinase activity reporter (AKAR) Ni Q, Titov DV, Zhang J. Methods. 2006 Nov;40(3):279-86. cytosolic myrpalm 1,15 1 *** 1,15 EmCFP/EmYFP EmCFP/EmYFP Detection of local cAMP activity using FRET in both MCF10-A and MDA-MB-435 cells * ** ** 1 0,9 0,9 mb psu ND mb psu mb psu ND D MCF10 A mb psu D MDA-MB-435 High cAMP concentration RII-CFP EmCFP/EmYFP Low cAMP concentration High cAMP concentration RII-CFP EmCFP/EmYFP Low cAMP concentration