Sterile Neutrinos: Phenomenology and Fits Marco Laveder Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova mailto://[email protected] Neutrino Unbound: http://www.nu.to.infn.it 16th Paris Cosmology Colloquium Chalonge 2012 25-27 July 2012, Observatoire de Paris, France M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 1/33 Three-Neutrino Mixing Paradigm νe νµ ντ m2 ν2 m2 ν3 ∆m2S ν1 ∆m2A ∆m2A ν2 ∆m2S ν1 Normal Spectrum ν3 Inverted Spectrum M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 2/33 Beyond Three-Neutrino Mixing νs1 ντ νµ νe ··· νs2 ν1 ν2 ν3 ν4 ν5 m21 m22 m23 m24 m25 ∆m2SOL ∆m2ATM ∆m2SBL 3ν-mixing M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 3/33 ··· log m2 Standard Model ◮ Neutrinos are the only massless fermions ◮ Neutrinos are the only fermions with only left-handed component νL ◮ Neutrinos are the only neutral fermions Extension of the SM: Massive Neutrinos ◮ Simplest extension: introduce right-handed component νR (singlet of SU(2)L × U(1)Y ) ◮ One generation: Dirac mass mD νR νL + Majorana mass mM νRc νR =⇒ 2 massive Majorana neutrinos ◮ Three left-handed fields + NR right-handed fields: νeL , νµL , ντ L + ν1R , . . . , νNR R =⇒ 3 + NR massive Majorana neutrinos M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 4/33 Sterile Neutrinos ◮ Light anti-νR are called sterile neutrinos νRc →νsL (left-handed) ◮ Sterile means no standard model interactions ◮ Active neutrinos (νe , νµ , ντ ) can oscillate into sterile neutrinos (νs ) ◮ Observables: ◮ ◮ Disappearance of active neutrinos (neutral current deficit) ◮ Indirect evidence through combined fit of data (current indication) Short-baseline anomalies + 3ν-mixing: ν1 νe 2 ≪ |∆m2 | ≪ |∆m2 | ≤ . . . ∆m21 31 41 ν2 ν3 ν4 ... νµ ντ νs1 ... M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 5/33 ◮ In this talk I consider sterile neutrinos with mass scale ∼ 1 eV in light of LSND, MiniBooNE, Reactor Anomaly, Gallium Anomaly. ◮ Other possibilities (not incompatible): ◮ Very light sterile neutrinos with mass scale ≪ 1 eV: important for solar neutrino phenomenology [de Holanda, Smirnov, PRD 83 (2011) 113011] ◮ Heavy sterile neutrinos with mass scale ≫ 1 eV: could be Warm Dark Matter [Kusenko, Phys. Rept. 481 (2009) 1] [Boyarsky, Ruchayskiy, Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 6/33 Effective SBL Oscillation Probabilities in 3+1 Schemes 2 2 Pνα →νβ = sin 2ϑαβ sin 2 L ∆m41 4E sin2 2ϑαβ = 4|Uα4 |2 |Uβ4 |2 No CP Violation! Pνα →να = 1 − sin2 2ϑαα sin2 2 L ∆m41 4E sin2 2ϑαα = 4|Uα4 |2 1 − |Uα4 |2 Perturbation of 3ν Mixing |Ue4 |2 ≪ 1 , Ue1 U = Ue2 Ue3 |Uµ4 |2 ≪ 1 , Ue4 |Uτ 4 |2 ≪ 1 , |Us4 |2 ≃ 1 sin2 2ϑαα ≪ 1 Uµ1 Uµ2 Uµ3 Uµ4 ⇓ Uτ 1 Uτ 2 Uτ 3 Uτ 4 Us1 Us2 Us3 Us4 |Uα4 |2 ≃ sin2 2ϑαα 4 SBL M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 7/33 Effective SBL Oscillation Probabilities in 3+2 Schemes 2 φkj = ∆mkj L/4E ∗ ∗ η = arg[Ue4 Uµ4 Ue5 Uµ5 ] P(−) (−) νµ → νe = 4|Ue4 |2 |Uµ4 |2 sin2 φ41 + 4|Ue5 |2 |Uµ5 |2 sin2 φ51 (+) + 8|Uµ4 Ue4 Uµ5 Ue5 | sin φ41 sin φ51 cos(φ54 − η) P(−) (−) να → να = 1 − 4(1 − |Uα4 |2 − |Uα5 |2 )(|Uα4 |2 sin2 φ41 + |Uα5 |2 sin2 φ51 ) − 4|Uα4 |2 |Uα5 |2 sin2 φ54 ◮ More parameters: 7 (vs 3 in 3+1) ◮ CP violation [Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004; Maltoni, Schwetz, PRD 76 (2007) 093005; Karagiorgi et al, PRD 80 (2009) 073001; Kopp, Maltoni, Schwetz, PRL 107 (2011) 091801; Giunti, Laveder, PRD 84 (2011) 073008; Donini et al, arXiv:1205.5230] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 8/33 LSND [LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] 20 MeV ≤ E ≤ 200 MeV Beam Excess 15 p(νµ→νe,e+)n _ _ _ p(νe,e+)n 12.5 10 2 2 17.5 2 4 L ≃ 30 m ∆m (eV /c ) Beam Excess ν̄µ → ν̄e 10 Karmen Bugey other 10 CCFR 1 7.5 NOMAD 5 10 2.5 -1 90% (Lmax-L < 2.3) 99% (Lmax-L < 4.6) 0 0.4 0.6 0.8 1 1.2 1.4 L/Eν (meters/MeV) 2 & 0.2 eV2 ∆mLSND 10 -2 10 -3 10 -2 (≫ ∆mA2 ≫ ∆mS2 ) M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 9/33 10 -1 1 2 sin 2θ MiniBooNE Neutrinos [PRL 98 (2007) 231801; PRL 102 (2009) 101802] Events / MeV νµ → νe L ≃ 541 m 200 MeV ≤ E . 3 GeV 3 Data νe from µ νe from K + νe from K 0 π0 misid ∆ → Nγ dirt other Total Background 2.5 2 1.5 1 0.5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5 1.6 3. Excess Events / MeV EQE ν (GeV) 0.8 data - expected background best-fit νµ →νe 0.6 2 sin22θ=0.004, ∆ m =1.0eV 2 2 sin22θ=0.2, ∆ m =0.1eV 2 0.4 0.2 0 -0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5 1.6 3. EQE ν (GeV) [MiniBooNE, PRL 102 (2009) 101802] ◮ ◮ [Djurcic, arXiv:0901.1648] no νµ → νe signal corresponding to LSND ν̄µ → ν̄e signal (E > 475 MeV) low-energy anomaly M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 10/33 MiniBooNE Antineutrinos - 2009-2010 [PRL 103 (2009) 111801; PRL 105 (2010) 181801] ν̄µ → ν̄e L ≃ 541 m 200 MeV ≤ E . 3 GeV 102 ν e & ν e from µ +/+/ν e & ν e from K 0 ν e & ν e from K π0 misid ∆ → Nγ dirt other Constr. Syst. Error Best Fit (E>475MeV) Fit Region 0.4 Events/MeV 0.2 0.3 Data - expected background 0.2 Best Fit sin 2θ=0.004, ∆ m =1.0eV 2 2 sin 2θ=0.03, ∆m =0.3eV 2 0.1 2 2 90% CL 99% CL KARMEN2 90% CL 10 |∆m2| (eV2/c4) Events/MeV 68% CL 0.6 BUGEY 90% CL 1 2 10-1 0.0 -0.1 0.2 LSND 90% CL 0.4 0.6 0.8 1.0 1.2 1.4 1.5 1.6 3.0 LSND 99% CL QE Eν (GeV) [MiniBooNE, PRL 105 (2010) 181801] 10-2 -3 10 10-2 10-1 sin2(2θ) ◮ 5.7e20 POT: agreement with LSND ν̄µ → ν̄e signal (E > 475 MeV) ◮ similar L/E but different L and E =⇒ oscillations M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 11/33 1 MiniBooNE ν̄ - Neutrino 2012 - 6 June agreement with LSND signal is sadly vanishing M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 12/33 MiniBooNE ν and ν̄ - Neutrino 2012 - 6 June Neutrino energy reconstruction problem? [Martini, Ericson, Chanfray, arXiv:1202.4745] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 13/33 The neutrino run (A) electron-like neutrino data. Comparison between the data (black dots) and the calculated distributions due to misidentified events (red) and genuine e events (blue). The sum is indicated in black. One notices an anomaly at low energies, which is incompatible with LNSD predictions. (B) according to Giunti & Laveder scaling of the events is applied with a factor 1.26, within the permitted uncertainty of F = 1.24 ±0.21 and gives an acceptable fit to the data. The e with and without scaling and disappearance are also shown. Venice_March2011 Slide# : 9 Reactor Electron Antineutrino Anomaly [Mention et al, PRD 83 (2011) 073006; update in White Paper, arXiv:1204.5379] new reactor ν̄e fluxes [Mueller et al, PRC 83 (2011) 054615] [Huber, PRC 84 (2011) 024617] Detection: PDG 1995 1998 2002 2011 2012 σ(ν̄e + p → n + e + ) ∝ τn−1 neutron lifetime τn 887.0 ± 2.0 sec 886.7 ± 1.9 sec 885.7 ± 0.8 sec 881.5 ± 1.5 sec 880.1 ± 1.1 sec change of predicted event rates 235 U +3.7% 238 U 239 Pu 241 Pu +9.8% +4.2% +4.7% M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 14/33 Reactor ν̄e Disappearance 2 ∆m41 L Pνe →νe = 1 − sin 2ϑee sin 4E sin2 2ϑee = 4|Ue4 |2 1 − |Ue4 |2 2 [Mention et al., in White Paper, arXiv:1204.5379] 102 2 [Giunti, Laveder, Li, Liu, Long, June 2012] 2 ∆m 41 [eV2] 10 + 1 10−1 10−2 REA 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−2 10−1 si n 22ϑee M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 15/33 1 Gallium Anomaly Gallium Radioactive Source Experiments Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar) νe + 71 Ga → 71 Ge + e − Detection Process: νe Sources: e − + 51 Cr → 51 V + νe e − + 37 Ar → 37 Cl + νe 51 Cr E [keV] B.R. 747 0.8163 752 0.0849 37 Ar 427 0.0895 432 0.0093 811 0.902 37Ar 37Cl (stable) 813 0.098 (35.04 days) 813 keV ν ( 9.8%) 811 keV ν (90.2%) [SAGE, PRC 73 (2006) 045805, nucl-ex/0512041] [SAGE, PRC 59 (1999) 2246, hep-ph/9803418] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 16/33 p(measured)/ p(predicted) 1.1 hLiGALLEX = 1.9 m GALLEX Cr1 SAGE Cr hLiSAGE = 0.6 m 1.0 0.9 0.8 0.7 GALLEX Cr2 SAGE Ar [SAGE, PRC 73 (2006) 045805, nucl-ex/0512041] RBGALLEX-Cr1 RBGALLEX-Cr2 RBSAGE-Cr RBSAGE-Ar = = = = 0.953 ± 0.11 0.812+0.10 −0.11 0.95 ± 0.12 0.791+0.084 −0.078 RBGa = 0.86 ± 0.05 Bahcall cross section without uncertainty [Bahcall, PRC 56 (1997) 3391, hep-ph/9710491] [GALLEX] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 17/33 ◮ Deficit could be due to overestimate of σ(νe + 71 Ga → 71 Ge + e − ) ◮ Calculation: Bahcall, PRC 56 (1997) 3391 3/2− 0.500 MeV 5/2− 0.175 MeV 1/2− 71 Ge 0.233 MeV 3/2− 71 ◮ ◮ ◮ σG.S. from T1/2 (71 Ge) Ga = 11.43 ± 0.03 days [Hampel, Remsberg, PRC 31 (1985) 666] σG.S. (51 Cr) = 55.3 × 10−46 cm2 (1 ± 0.004)3σ BGT175 BGT500 51 51 σ( Cr) = σG.S. ( Cr) 1 + 0.669 + 0.220 BGTG.S. BGTG.S. Contribution of Excited States only 5%! M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 18/33 Krofcheck et al. PRL 55 (1985) 1051 71 Haxton PLB 431 (1998) 110 Frekers et al. PLB 706 (2011) 134 ◮ Ga(p, n)71 Ge Shell Model 71 BGT175 BGTG.S. BGT500 BGTG.S. < 0.056 0.13 ± 0.02 0.19 ± 0.18 Ga(3 He, 3 H)71 Ge 0.039 ± 0.030 0.202 ± 0.016 Haxton: [Haxton, PLB 431 (1998) 110] “a sophisticated shell model calculation is performed ... for the transition to the first excited state in 71 Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements” ◮ 2.7σ discrepancy of BGT500 /BGTG.S. measurements ◮ Anyhow, new 71 Ga(3 He, 3 H)71 Ge data support Gallium Anomaly! M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 19/33 Gallium νe Disappearance 102 102 [Giunti, Laveder, Li, Liu, Long, June 2012] 10 10 10−1 1 10−1 GAL − Haxton 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−3 + [eV2] 2 ∆m 41 2 ∆m 41 [eV2] + 1 10−2 [Giunti, Laveder, Li, Liu, Long, June 2012] 10−2 10−1 10−2 1 GAL − Frekers et al. 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−3 10−2 si n 22ϑee No Osc. 3+1 χ2min NDF GoF χ2min NDF GoF 2 ∆m41 [eV2 ] sin2 2ϑee 10−1 si n 22ϑee 14.9 4 0.5 % 4.7 2 9.5 % 2.24 0.51 No Osc. 3+1 χ2min NDF GoF χ2min NDF GoF 2 ∆m41 [eV2 ] sin2 2ϑee M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 20/33 18.2 4 0.1 % 7.9 2 1.9 % 2.14 0.32 1 Reactor ν̄e and Gallium νe Disappearance 102 102 [Giunti, Laveder, Li, Liu, Long, June 2012] + 1 2 ∆m 41 2 ∆m 41 [eV2] 10 [eV2] 10 10−1 10−2 [Giunti, Laveder, Li, Liu, Long, June 2012] 10−1 REA + GAL − Haxton 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−2 + 1 10−2 10−1 1 REA + GAL − Frekers et al. 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−2 10−1 si n 22ϑee No Osc. 3+1 χ2min NDF GoF χ2min NDF GoF 2 ∆m41 [eV2 ] sin2 2ϑee 1 si n 22ϑee 45.6 42 32.3 % 30.8 40 85 % 1.95 0.16 No Osc. 3+1 χ2min NDF GoF χ2min NDF GoF 2 ∆m41 [eV2 ] sin2 2ϑee 48.9 42 21.5 % 32.2 40 80 % 1.95 0.16 M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 21/33 Global νe and ν̄e Disappearance 102 [Giunti, Laveder, Li, Liu, Long, June 2012] + 10 2 ∆m 41 [eV2] + + + 1 10−1 10−2 95% C.L. Gallium Reactors νe−C Sun Combined 10−2 10−1 1 si n 22ϑee KARMEN + LSND νe + 12 C → 12 Ng.s. + e − SUN&KamLAND + ϑ13 [Conrad, Shaevitz, PRD 85 (2012) 013017] [Palazzo, PRD 83 (2011) 113013] [Giunti, Laveder, PLB 706 (2011) 200] [Palazzo, PRD 85 (2012) 077301] [Giunti, Li, PRD 80 (2009) 113007] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 22/33 SUN&KamLAND + ϑ13 bound on |Ue4|2 [Giunti, Li, PRD 80 (2009) 113007; Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301] 3+1 with simplifying assumptions: Uµ4 = Uτ 4 = 0, no CP violation Ue1 = c12 c13 c14 Ue2 = s12 c13 c14 Ue3 = s13 c14 Ue4 = s14 Us1 = −c12 c13 s14 Us2 = −s12 c13 s14 Us3 = −s13 s14 Us4 = c14 4 4 4 4 4 2ν c14 + s14 c14 Pνe →νe + s13 Pνe →νe = c13 4 4 2 2 +1 Pν2νe →νs + s13 s14 c13 Pνe →νs = c14 2 2 2 2 V = c13 c14 VCC − c13 s14 VNC = (|Ue1 |2 + |Ue2 |2 )VCC − (|Us1 |2 + |Us2 |2 )VNC ∆χ 2 [Giunti, Laveder, Li, June 2012] Fit with Uµ4 and Uτ 4 free: θ 14 M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 23/33 Global νe and ν̄e Disappearance [Giunti, Laveder, Li, Liu, Long, June 2012] 10 2 ∆m 41 [eV2] + 1 GAL+REA+νeC+SUN 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−1 10−2 10−1 1 2 si n 2ϑee No Osc. 3+1 χ2min NDF GoF χ2min NDF GoF 2 ∆m41 [eV2 ] sin2 2ϑee 57.1 53 32.6 % 46.0 51 67 % 7.59 0.12 No Osc. 3+1 χ2min NDF GoF χ2min NDF GoF 2 ∆m41 [eV2 ] sin2 2ϑee M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 24/33 318.4 331 68% 306.0 329 80% 1.71 0.099 Testable Implications β Decay 10 10 (ββ)0ν Decay [Giunti, Laveder, Li, Liu, Long, June 2012] [Giunti, Laveder, Li, Liu, Long, June 2012] 99.73% 8 8 99.73% EXO 99% 95.45% 4 4 ∆χ2 ∆χ2 6 6 99% 95.45% 90% 2 2 90% 68.27% 68.27% GAL+REA+νeC+SUN 10−2 0 0 GAL+REA+νeC+SUN 10−1 (4) mβ |Uek |2 mk2 q 2 = |Ue4 | ∆m41 mβ = (4) mβ qP 1 [eV] k 10−3 10−2 (4) mββ 10−1 [eV] P 2 mββ = k Uek mk q (4) 2 mββ = |Ue4 |2 ∆m41 M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 25/33 KK 1 Global 3+1 Fit: Disappearance Constraints ◮ νe disappearance experiments: sin2 2ϑee = 4|Ue4 |2 1 − |Ue4 |2 ≃ 4|Ue4 |2 ◮ νµ disappearance experiments: sin2 2ϑµµ = 4|Uµ4 |2 1 − |Uµ4 |2 ≃ 4|Uµ4 |2 ◮ νµ → νe experiments: sin2 2ϑeµ = 4|Ue4 |2 |Uµ4 |2 ≃ ◮ 1 2 sin 2ϑee sin2 2ϑµµ 4 Upper bounds on sin2 2ϑee and sin2 2ϑµµ =⇒ strong limit on sin2 2ϑeµ [Okada, Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694] [Bilenky, Giunti, Grimus, Eur. Phys. J. C1 (1998) 247] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 26/33 νµ and ν̄µ Disappearance 102 99% C.L. CDHSW (1984): νµ ATM: νµ + νµ MINOS (2011): νµ [eV2] 10 ◮ 2 ∆m 41 1 ATM constraint on |Uµ4 |2 [Maltoni, Schwetz, PRD 76 (2007) 093005] ◮ MINOS constraint on |Uµ4 |2 [Giunti, Laveder, PRD 84 (2011) 093006] −1 10 10−2 10−2 10−1 1 si n 22ϑµµ M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 27/33 νe and ν̄e Disappearance 102 99% C.L. Bugey3 Bugey4+Rovno Gosgen+ILL Krasnoyarsk νe − 12C Gallium SUN [Mention et al., PRD 83 (2011) 073006] [Huber, PRC 84 (2011) 024617] ◮ 1 2 ∆m 41 New Reactor ν̄e Fluxes [Mueller et al., PRC 83 (2011) 054615] [eV2] 10 ◮ KARMEN + LSND νe + 12 C → 12 Ng.s. + e − [Conrad, Shaevitz, PRD 85 (2012) 013017] [Giunti, Laveder, PLB 706 (2011) 200] −1 10 ◮ SUN&KamLAND + ϑ13 [Giunti, Li, PRD 80 (2009) 113007] [Palazzo, PRD 83 (2011) 113013] [Palazzo, PRD 85 (2012) 077301] 10−2 10 −2 10 −1 1 [Giunti, Laveder, Li, Liu, Long, in preparation] 2 si n 2ϑee M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 28/33 3+1 with SUN&KamLAND+ϑ13 10 3+1 − 3σ 2 ∆m 41 [eV2] νe Dis νµ Dis Dis App GoF = 38% 1 PGoF = 0.3% 10−1 10−4 10−3 10−2 10−1 1 si n 22ϑeµ ◮ 3+1 & 3+2: Appearance-Disappearance tension Tension reduced in 3+1+NSI [Akhmedov, Schwetz, JHEP 10 (2010) 115] ◮ No tension in 3+1+CPTV ◮ [Barger, Marfatia, Whisnant, PLB 576 (2003) 303] [Giunti, Laveder, PRD 82 (2010) 093016, PRD 83 (2011) 053006] M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 29/33 10 3+2 with SUN&KamLAND+ϑ13 8 3+2 − 3σ App Dis 4|U e5|2|U µ5|2 10−1 0 2 4 ∆χ2 6 3+2 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) 10−2 + 10−3 1 1 2 ∆m 51 [eV2] + 10−1 10 −1 0 1 2 ∆m 41 [eV2] 2 4 6 8 10 10−4 + 10−4 10−3 GoF = 46% 10−2 10−1 4|U e4|2|U µ4|2 ∆χ2 PGoF = 0.29% ◮ 3+2 is preferred to 3+1 only if there is CP-violating MiniBooNE neutrino-antineutrino difference ◮ almost disappeared with 2012 MiniBooNE antineutrino data M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 30/33 3+1 Global Fit 10 3+1 − GLO+SUN 68.27% C.L. (1σ) 90.00% C.L. 95.45% C.L. (2σ) 99.00% C.L. 99.73% C.L. (3σ) [eV2] + + + 2 ∆m 41 1 DIS 10 DIS APP −1 10−4 10−3 10−2 si n 22ϑeµ 10−1 DIS [Giunti, Laveder, May 2012] 10−2 10−1 si n 22ϑee ◮ MiniBooNE 2011 data (E > 475 MeV) ◮ More time is needed to fit MiniBooNE 2012 data 10−2 10−1 si n 22ϑµµ M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 31/33 New Neutrino Facility in the CERN North Area� Near position (330 m) Mid position (1100 m) Far position (1600 m) 100 GeV primary beam fast extracted from SPS; target station next to TCC2; decay pipe l =100m, ø = 3m; beam dump: 15m of Fe with graphite core, followed by µ stations. Neutrino beam angle: pointing upwards; at -3m in the far detector ~5mrad slope. SPSC_Open Presentation April 2012� Slide 16� LAr + NESSiE νμdisappearance LAr + Cosmology ◮ Ns = number of thermalized sterile neutrinos (not necessarily integer) ◮ CMB and LSS in ΛCDM: Ns = 1.3 ± 0.9 ms < 0.66 eV (95% C.L.) [Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 105 (2010) 181301] Ns = 1.61 ± 0.92 ms < 0.70 eV (95% C.L.) [Giusarma, Corsi, Archidiacono, de Putter, Melchiorri, Mena, Pandolfi, PRD 83 (2011) 115023] Ns = 1.12+0.86 −0.74 ◮ ◮ (95% C.L.) Ns = 0.22 ± 0.59 BBN: Ns = 0.64+0.40 −0.35 Ns ≤ 1 at 95% C.L. CMB+LSS+BBN: [Archidiacono, Calabrese, Melchiorri, PRD 84 (2011) 123008] [Cyburt, Fields, Olive, Skillman, AP 23 (2005) 313] [Izotov, Thuan, ApJL 710 (2010) L67] [Mangano, Serpico, PLB 701 (2011) 296] Ns = 0.85+0.39 −0.56 (95% C.L.) [Hamann, Hannestad, Raffelt, Wong, JCAP 1109 (2011) 034] ◮ Standard ΛCDM: 3+1 allowed, 3+2 disfavored M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 32/33 A.G. Riess et al. astro-ph 1103.2976 Conclusions ◮ Short-baseline neutrino oscillation anomalies =⇒ sterile neutrinos ◮ Short-Baseline ν̄µ → ν̄e Signal is not feeling well: ◮ ◮ ◮ ◮ ◮ ◮ MiniBooNE 2011 antineutrino data were more similar to neutrino data than those of 2010 (LSND signal diminished and low-energy anomaly appeared) MiniBooNE 2012 antineutrino data are even more similar to neutrino data Probably there is no CP violation =⇒ no need of 3+2 The decrease of MiniBooNE-LSND agreement is discouraging Better experiments are needed to clarify situation Short-Baseline νe and ν̄e Disappearance is in good health: ◮ ◮ ◮ ◮ Reactor ν̄e anomaly is alive and exciting Gallium νe anomaly has been strengthened by new cross-section measurements Many promising projects to test short-baseline νe and ν̄e disappearance in a few years with reactors and radioactive sources Independent tests through effect of m4 in β-decay and (ββ)0ν -decay M. Laveder − Sterile Neutrinos: Phenomenology and Fits − 25 July 2012 − 33/33 Backup slides Parameter Goodness-of-fit (PG) • The goodness-of-fit is the probability to obtain a worse fit under the assumption that the model under consideration is correct. It is the standard statistic used for the estimation of the quality of a fit obtained with the least-squares method, assuming the validity of the approximation in which χ2min has a χ2 distribution with NDF = ND − NP degrees of freedom, where ND is the number of data points and NP is the number of fitted parameters. The fit is usually considered to be acceptable if the goodness-of-fit is larger than about 1%. • The value of (Δχ2min )A+B corresponding to the Parameter Goodness-of-fit (PG) of two experiments A and B is given by (χ2min )A+B − [(χ2min )A + (χ2min )B ]. It has a χ2 distribution with number of degrees of freedom NDF = PA + PB − PA+B , where PA , PB and PA+B are, respectively, the number of parameters in the fits of A, B and A+B data. [M. Maltoni and T. Schwetz, Phys. Rev. D68 (2003) 033020 (hep-ph/0304176).]