Seminari DICAT 14 Marzo, 2007 Mechanics of masonry structures: arches, shear walls and vaults Luigi Gambarotta [email protected] Layout: • • • • • • Historic and old masonry buildings Modelling: general aspects Columns, arches and bridges Walls Domes Conclusions Web site: prinpontimuratura.diseg.unige.it Piranesi: Pantheon (Choisy) 1. Historic masonry constructions: from damage to safety 1. Knowledge about historic constructions: •Historical research •Historic construction techniques and materials •Inspection-damage 2. Mechanical modeling: •Interpretation of damages – diagnosis •Simulation •Assessment •Evaluation of strengthening techniques V. Lamberti, Statica degli edifici, Napoli, 1781 3. Design •Assessment of structural safety •Design of repairs (if required) Arches Temple of Sethi I and Ramses II, XIX Dinasty Roma, Mercati traianei Palace at Ctesiphon, A.D. 550 Arches Umbria-Marche Earthquake, 1997 Masonry bridges Prestwood Bridge (Page, 1993) Road bridge Arquata S., Alessandria Railway bridge (Bologna-Piacenza) Masonry walls Umbria-Marche Earthquake, Colfiorito, 1997 Out-of-plane collapse Masonry walls Umbria-Marche Earthquake, Colfiorito, 1997 In-plane collapse South Piemonte Earthquake, 2003 Vaults Umbria-Marche Earthquake, 1997 Pantheon Masonry domes S. Maria del Fiore S. Pietro Masonry domes Basilica di S. Maria di Carignano - Genova Materials and bond patterns dis ord e r Old building construction techniques and rules of practice Rondelet Curioni Old building construction techniques and rules of practice In the absence of rules…… Caste in S. Cristoforo, Genova 2. Modeling: general aspects The aims of mechanical modeling masonry constructions • interpretation of the damage and (realistic) assessment of the structural safety; • selection of the most efficient and less invasive repairs and strengthening techniques (if necessary), compatible with the original design concepts of the construction. Understanding the relevant mechanical behavior of the construction through proper structural models (avoiding dogmatic conventional assessment procedure) Masonry • heterogeneous material (periodic – random bond pattern) • components: brick unit, stone block, mortar layer • quasi-brittle behavior • different types of bond pattern – thick masonry walls • Randomness of the material parameters • to be calibrated by in situ set up • constitutive modeling based on the geometry and assembly of the components and their constitutive models 2. Modeling: general aspects (cont’d) The masonry construction • Construction Versus structure • Mechanical interaction among the construction elements (vaults, walls, columns, arches, ……) • Building – foundation interactions • Modification and extension of the construction (superfetations, growth, etc…) • Building to building interaction (Historic centres and urban aggregates) Other aspects • Sensitivity to the applied loads: static (weigth loads) V/s dynamic (seismic, traffic…) loads. • Sensitivity to the construction sequence • Influence of initial stresses and strains and quasi-brittle behavior of masonry: how to approach the safety assessment? • Chemo-physical degradation and residual life 2. Modeling: general aspects Cyclic shear test set up (Anthoine et al., 1994) Imposed horizontal displacement on compressed walls Attuatori Hysteresis & damage Dominant NL elastic response NTR Squat wall Slender wall b=100cm h=135cm b=100cm h=200cm 2. Modeling: introductory aspects The constitutive ingredients Elasticity Unilateral contact Plasticity Friction Damage Fracture Viscoelasticity Homogenization Periodic bond pattern masonry localization Attuatori Macro S,E micro s,e Homogeneous macro-strain RVE 3. Columns and arches Compressive strength hb brick unit thickness a=hb/hm hm mortar layer thickness fM = α f bt + f mt α f bt f bc + f mt f mc Hilsdorf, 1969 3. Columns and arches Eccentrically loaded columns & arches Experimental set up u 1 unit stack e=0 e = 4cm 2 unit stack e = 6cm e = 8cm Corradi et al, 2006 Eccentrically loaded columns & arches M/Mo Theoretical limit domain N-M 250 1/2 D NTR + EPP compression [kN] C B 200 A e=0 −1 e=4 Carico Load 150 e=6 C B e=8 D 100 δ ≅ 1.4-1.5 Experimental limit domains N-M 0.30 M/M0 50 [mm] 0 0.25 0.0 0.5 1.0 1.5 2.0 2.5 Spostamento Displacement 3.0 3.5 N/No A 4.0 0.20 0.15 0.10 0.05 N/N0 0.00 0.0 Brencich e Gambarotta, RILEM, 2005 0.2 Brittle Duct.: 2 Exp. Genoa-2 e/h=1/4 e/h=1/8 Hatz. et al. Drysd. Ham, 1982 0.4 0.6 Duct.: 1.25 Ductile e/h=1/6 e/h=1/3 e/h=1/15 Maurenbr. 0.8 1.0 Duct.: 1.5 Exp. Genoa-1 e/h=1/5 e/h=2/5 e/h=1/2 Drysd. Ham, 1979 Eccentrically loaded columns & arches Periodic cell M N Assumed tension field b hb 2 B y Φ a ha B x hb 2 a ( x, y ) = a p 0 ⎡⎣ f 0 ( x ) + r f p N d 0 ( x )⎤⎦ + ∑∑ anm f n ( x ) g ma ( y ) b B l Φ simmetry ⎡⎣ f N p 0 Mb ( x ) + r f ( x )⎤⎦ + ∑∑ bnm f n ( x ) g mb ( y ) d 0 n =1 m =1 + plastic admissibility 0 B yb b hb /2 y S B ha 2 ( x, y ) = a p 0 n =1 m =1 + B.C. on f() e g() x hb 2 b Ma x a ha /2 + unilateral – frictional brick-layer interface 0 l ⎧min N = cT a ⎪ ⎪ ⎧S a ≤ d ⎪ PPLIN ⎨ ⎪ ⎪ ⎪ t.c. ⎨ A eq a = 0 ⎪ ⎪ ⎪ ⎪⎩ A att a ≤ 0 ⎩ REV N M l Influence of the unit shape ratio h/b 0.5 Concentric load Boundary effects b 0.4 B y x M / M0 l 0.3 l=120 l=250 a B σ xx E.P. 0.2 σ yy 0.1 0.0 0.0 0.2 0.4 0.6 N / N0 0.8 1.0 σ xy Incremental analysis – Castigliano Iterative updating of the compressed section 3. Masonry bridges σ'c σ'c σc σ compression y M x h G εel N ε compression M x h G σ0 no-tensile resitant area no-tensile resitant area NRT + EPP compression NRT N σ'c ∆NEP com pression P x 150 80° 75 375 h G N no-tensile resitant area 1500 1500 R=937.5 M x 220 750 36.87° Brencich et al, 2003 Limit analysis - NTR model Kooharian, Heyman, ……….. Hypotheses: 1. No tensile strength masonry NTR 2. Infinite compressive strength 3. No sliding failure 4. Small displacement and rotations Thrust line Statically admissible stress field µs f Safe theorem b0 µ c = max µ s . Trust line Limit analysis – NRT model µ k = − ∫ γ hb u v ( s ) ds Kinematically admissible mechanisms ∫ q u ( s ) ds v S S µkq µk q θ2 ' G2 b = γ hb −θ 2 C'2 C2 G2 R ' G1 G1 θ1 h −θ 1 ' C1 ' G2 G C1 s ' 2 + u uv − u θ1 s ' G1 G1 C1 ' C1 Potential failure mechanism. µc Kinematic theorem µ c = min µ k µq Limit analysis: applications F C22 ' C2 Steel rod A,σ0 Tie rod G2 G2 G1 G1 θB Effects of the limited compressive strength (2° hypot.) ' ' f (N, M )= |M| - Nh = 0 2 θ C1 vv Hθ C12 C12 w horizontal displacement rate M elastic - NTR limit domain n Columns n A C B Vertical displacement rate θB Arch N0 El - NTR - Plastic domain f (N, M )= |M| - Nh [1- N ] = 0 N0 2 N Masonry bridges: Vault – fill interaction Tests on full scale masonry bridges: Prestwood Bridge Page, 1993 Pexp = 228kN Live load Heavy not resisting fill b = 300 a =1 4 h r = 165 h s = 220 f =1428 ′ = 2000 Pu = 46kN = 6550 hinges ′ = 2000 Prestwood Bridge Tests on model scale bridges Total load applied F ( kN ) (Royles & Hendry, 1991) Fcfill Fcfill ≅4 Fc Complete bridge Vault and fill Fc Vault Crisfield (1985) v ( mm ) Choo et al. (1991) Owen et al. (1998) Bicanic et al. (2003) Limit analysis of the bridge p = pp 0 + sp Ii ∂Ωf Cavicchi & Gambarotta, 2005, 06, 07 Li Ωf u ϑ u bb Ω b i b ϑ u (a) Hypotheses: x2 bb O x1 (b) 1. Arches & piers : NTR – EPP in compression Limit domains 2. Fill: Mohr-Coulomb + Cut-off fb = 0 f mc = 0 M Mp 12 τ 12 σ 22 N Np 1 ft = 0 12 σ 11 Fill: Mohr Coulamb + Cut off Arch: NTR - EEP in compression 3. FE discretization 4. Plane strain/plane stress 5. Piecewise linearization of the limit domains Triangular elements ξ u2k ξ t k u -t u1h h h ν ν Equilibrium FE model arch – fill interaction f bk+ = 0 Lower bound M Mp ft = 0 τ 12 (a) ∆u g k+ b =0 −1 N Np σ 22 gt = 0 2 (σ 11 −σ 22 ) 2 −1 2 g bk- (b) u1i τ 12 12 N u1j j Compatible FE model Arch – fill interaction Upper bound ∆ uα ϑϕj j Beam ν elements ν M i 2 ξ u2j i Interface elements i σc u ϑϕii j u1k k ξ k h ∆ϑ h 2 σ 11 =0 (c) (a) f bk- = 0 Piecewise linearization of the limit domains (b) Prestwood Bridge collapse: numerical simulation U. B. - collapse mechanism (plane strain) γ max γ max ⋅10−1 γ max ⋅10−2 γ max ⋅10−3 γ max ⋅10−4 Hinge at haunch σc = 4.5MPa ϕ = 37o c = 10kPa (Page, 1993) Pexp = 228kN Plane strain U. B. -Collapse mechanism PU = 228kN (a) γ max γ max ⋅10−1 γ max ⋅10−2 γ max ⋅10−3 γ max ⋅10−4 L.B. – Principal stress field PL = 184kN (b) Lateral pressure −49.7 −14.9 −9.9 −5 0 ( kPa) Plane stess PU = 184kN (a) γ max γ max ⋅10−1 γ max ⋅10−2 γ max ⋅10−3 γ max ⋅10−4 PL = 160kN Inluence of the cohesion and the angle of internal friction on the collapse load 450 400 350 350 300 300 250 LB 200 150 200 100 50 50 10 ( 20 c (kPa) σc = 4.5MPa, ϕ = 37 o LB NRT 150 LB NRT 0 UB NRT 250 100 0 UB 400 UB NRT pu (kN) pu (kN) 450 UB LB 0 30 0 ) 350 10 20 30 40 φ ( σc = 4.5MPa, c = 10kPa ) UB UB NRT 300 Influence of the masonry compressive strength on the collapse load pu (kN) 250 200 LB 150 LB NRT 100 50 0 0 5 ( 10 15 σc (MPa) c = 10kPa, ϕ = 37 o ) 20 50 Prestwood Bridge Load\deflection curve and ductility demand Incremental analysis UpperUpper bound bound 0.8 0.7 P u /(c 2 ) 0.6 0.5 δ =1 0.4 δ=3 δ=2 0.3 c = 0.01 MPa φ = 37o σc = 4.5 MPa 0.2 0.1 0 0 1 2 3 4 5 6 (*104-4)) v/A (*10 7 Vertical displacement v 8 Masonry ductility: ε δ= εc Multi span bridge: Fill – arches – piers interaction Fill model properties: Fill density Discrete domain planes ρ = 18 kN / m3 p = 36 Arch model properties: Masonry density Discrete domain planes ρ = 18 kN / m3 p = 48 h r =1 h s =1 σc = 12 MPa ϕ = 30o f =7 c = 20kPa h =10 b=6 h s =1 =14 hp =3 =14 Multi span bridge U.B. – collapse mechanism Non resistant fill PU = 2468 kN L.B. – statically admissible stress field Pu = 625 kN ( Pu = 923 kN ) PL = 2150 kN Sterpi et al., 2006 Masonry bridges: probabilistic analysis Compressive strength: a random variable P.D.F. M fc y N N = f c by M = f c by (h − y ) 2 N M 2m piecewise linearization Kinematical model of the arch n potential generalized plastic k hinges sf Pr ( s ) = Prob ⎡⎣∃u ∈V : f0T u + sf T u > rT λ p ⎤⎦ h Discrete model – failure - i-th mechanism j i nt = Cn4 Rm4 = n! m4 4!( n − 4 ) ! Mechanism enumeration Approximations: bounds on the C.D.F. [ Ei ] = ⎡⎣f T 0 ui + sf u i > r λ pi ⎤⎦ T T si = Pr [ Ei ] = Pr [ si < s0 ] rT λ pi − f0T ui f T ui ⎛ ⎞ max Pr ( Ei ) ≤ Pr ⎜ ∪ Ei ⎟ ≤ ∑ Pr ( Ei ) ⎝ i ⎠ i Masonry bridges: probabilistic analysis 450 kN 450 kN 17,70m Prarolo Bridge, Genova, 40m span 11,25m 6,45m sP sP sP sP 5 4 6 3 7 0,935sP 0,263sP 2 8 1,137sP 1 9 0,665sP 1,00sP sP c.o.v. 15% M sP sP sP 4,9 6 4 1 9 N First mechanism CDF 2 6 1 −3 x 10 1.8 1.6 Hypotheses: The compressive masonry strength is gaussian s= Dint − W0 Wa 1.2 P(s) Statistically independent random variables 1.4 U.B. 10-3 1 0.8 λ C (r ) λ L.B. 0.6 T c.o.v. = The structural strength (upper bound theorem) is gaussian Dint − W0 0.4 0.2 0 1200 1250 1300 1350 s 1400 1450 1500 Masonry railway bridges Open problems ? Non linear analysis including damage and cracking 4. Masonry walls – Simulation of in-plane response to seismic actions Cyclic horizontal forces, anisotropic damage, damage localization, hysteretic dissipation, inertial vertical forces ………… Travi di servizio 640 Cella di carico (50 t) Cella di carico 2+2 barre ø35 L=6150 mm, filettate (25 t) Martinetti (50 t) 0.00 PROSPETTO PROSPETTO DELLA PARETE SEZIONE LONGITUDINALE Block masonry wall in S.Sisto (Beolchini et al., 1997). Brick masonry wall tested in Pavia, Magenes et al. (1994). 10 u2 u1 F2 [daN*10-3] 5 0 u [mm] -5 -10 -10 a) -10 -5 0 5 10 330 4. Shear wall – in-plane response Shear testing on brick-mortar assemblages Shear test apparatus - Triplet (Binda et al., 1995). τ mean shear stress - γ mean shear strain σn ε - mean normal extension Experimental results Phenomenological description 4. Shear wall – in-plane response Direct cyclic shear test by Atkinson et al., 1989. Brick-mortar interface model: coupled damage-frictional interface Gambarotta e Lagomarsino, 1997 b /2 s Macro fieds b /2 σ m = {σ t σ n τ}t ε *m = {0 ε *m γ *m }t Inelastic strain ε m = {0 ε m γ m } t Vm Total strain ε m = K mσ m + ε *m ε *m = h(α m ) H ( σ n ) σ n γ *m = k (α m ) ( τ − f ) Conjugate variables am damage variable f friction Damage evolution Sliding Ym = 12 h'( α m ) H ( σ n ) σ n2 + 12 k '( α m ) ( τ − f )2 , γ*m φdm = Ym − Rm ≤ 0 φdm = 0, φdm ≤ 0, αm ≥ 0, φdmαm = 0 φ s = f + µσ n ≤ 0 . . . γ *m = v λ , λ ≥ 0 v= f f Brick-mortar interface model: coupled damage-frictional interface b/2 s b/2 Vm Limit states Slid ing & dam age Elastic Hysteretic damage Simulation of experimental results (Binda et al) 4. Masonry walls – simulation of the in-plane response FE model Brick units + Interface (c) SR OR (b) (a) OR A BR (a) B OR C (b) (d) 4. Masonry walls – Discrete models Casciaro et al, 2002 Salerno, Uva, 2006 Coupled damage-frictional interface (Gambarotta e Lagomarsino, 1997) Blocchi rigidi Mixed FE formulation Arch-length iterative analysis 4. Large masonry shear walls – seismic actions Micro fields σ, u, ε, ζ Macro fields Σ, Ε, Ζ u ( x ) = Ex + u per divσ = 0 in E σn antiperiodic on ∂E σ n=0 ∂E su I Micro – costitutive equations I E σm ↔ εm , ζ m Interface σi ↔ εi , ζ i ζ internal variables 1 x ⊗ tds A ∂∫E E= 1 sym ( u ⊗ n ) ds A ∂∫E Macro – costitutive equations Σ ↔ Ε, Ζ Brick units σ b ↔ ε b , ζ b Mortar Σ= Periodic RVE Ζ internal variables Layered micro-model 4. Continuum damage-friction model ε = KM σ + η ε + η ε * m m * b b (Gambarotta e Lagomarsino, 1997) ε *b = {0 ε b γ b }t b /2 Brick unit s b /2 ε = {ε1 ε 2 γ }t Vm σ = {σ1 σ 2 τ}t ε*m = {0 ε m γ m }t Mean stress interface Interface ε m = cmn α m H (σ 2 ) σ 2 Limit conditions: γ m = cmt α m (τ − f ) • Damage Internal variables: am damage & f interface friction Conjugate variables Ym = 1 cmn H ( σ2 ) σ22 + 1 cmt ( τ − f )2 , γ m 2 2 φ dm = Ym − Rm (α m ) ≤ 0 φ db = Yb − Rb (α b ) ≤ 0 • Friction Brick unit φ s = f + µσ 2 ≤ 0 ε b = cbn α b H (-σ 2 ) σ 2 . γ b = cbt α b τ Internal variavle: ab danno nel mattone Conjugate variable RVE Yb = 1 cbn H (-σ 2 ) σ 22 + 1 cbt τ 2 2 2 sliding . . γm = vλ , λ ≥ 0 v=f /|f | Layered micro-model 4. Continuum damage-friction model σ2 ≥ 0 Opened interface (Gambarotta e Lagomarsino, 1997) Evolution of the internal variables . ⎧⎪φ ⎫⎪ ⎡R' 0 ⎤⎧⎪α. ⎫⎪ ⎧⎪c σ σ. + c τ τ. ⎫⎪ m m dm mn 2 2 + . . mt ⎬ ≤ 0 ⎨ . ⎬ = −⎢ ⎨ ⎨ ⎬ ⎥ ' ⎪⎭ cbt τ τ ⎪⎩φdb ⎪⎭ ⎣ 0 Rb ⎦⎪⎩αb ⎪⎭ ⎪⎩ φ dm = 21 cmn σ 22 + 21 cmt τ 2 − Rm (α m ) ≤ 0 φ db = 21 cbt τ 2 − Rb (α b ) ≤ 0 . . {φ dm γ 2m = − Rm ( α m ) ≤ 0 cmt α 2m σ2 < 0 φ dm Closed interface φs = τ − 1 2 γm + µσ 2 ≤ 0 cmt α m φ db = 21 cbn σ 22 + 21 cbt τ 2 − Rb (α b ) ≤ 0 ⎡ γ 2m − − Rm' . ⎢ 3 ⎧φ ⎫ cmt α m ⎪⎪ .dm ⎪⎪ ⎢ vγ m ⎢ ⎨ φs ⎬ = ⎢ 2 ⎪ . ⎪ ⎢ cmt α m ⎪⎩ φdb ⎪⎭ ⎢ 0 ⎢⎣ . {φ . dm . . }{α φs φdb . }{α φdb m . 0 . . } t . {α =0 . m } αb t ≥0 ⎤ 0⎥ . 0 ⎫ ⎥⎧⎪α.m ⎫⎪ ⎧ . . ⎪ ⎪ ⎪ ⎪ 0 ⎥⎨ λ ⎬ + ⎨ v τ+ µ σ 2 ⎬ ≤ 0 ⎥ . . . ⎥⎪⎪α b ⎪⎪ ⎪⎩cbnσ2 σ2 + cbt τ τ⎪⎭ ⎥⎩ ⎭ Rb' ⎥ ⎦ vγ m cmt α2m −1 cmt α m λ αb } αb m t =0 . {α . . m } λ αb t ≥0 Limit states Damage in the interface and brick units Elastic interface Brick damage 4. Large shear walls – simulation of experimental results Crack pattern (Magenes et al) exp DRIFT 0.1% simul Cyclic response of the door wall: a) experimental; b) numerical simulation. DRIFT 0.3% 4. Large shear walls – dynamic response to ground motion (a) Acceleration response spectrum of the input base motion. Amplification function with respect to the base of the wall: (b) first floor displacement, (c) second floor displacement. (a) Acceleration time history applied at the base of the wall. (b) Displacement time history on the second floor. Cyclic response of the large scale wall: (a) second floor; (b) first floor. 4. Large shear walls – response to horizontal forces Brencich etal, 2001 266 1586 Masonry building in Catania GNDT 1320 Horizontal forces superimposed on vertical dead loads s=57 cm PARETE 3 PARETE 3 340 185 980 PARETE 1 s=86 cm PARETE 2 Via G. Oberdan Via G. Oberdan 125 360 485 310 795 1586 Via L. Capuana Via L. Capuana 360 Cortile interno Anteriore al 1840 Anteriore al 1840 PIANO TERRA 211 211 130 341 168 509 205 714 130 189 903 1033 193 1226 1226 .02 .05 .07 .10 .13 .15 .18 .20 .23 .25 .28 .30 .33 .35 .38 .40 .43 .45 .48 .50 .55 .55 .58 .60 .66 (a) Deformazione angolare globale (%) 110 .53 (b) 90 80 70 60 Taglio alla base (t) 100 (c) PUNTO 1 PUNTO 2 (d) 50 40 PUNTO 3 30 (e) 20 Taglio alla base / Peso verticale complessivo 120 .68 .68 .63 .57 .51 .46 .40 .34 .28 .23 .17 .11 .06 10 Spostamento in sommita' (cm) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 10.0 10.4 10.8 Simplified collapse mechanism (Como e Grimaldi) 4. Large shear walls – simplified approaches λ F3 P2 P1 P4 P3 F3 λ F2 G2 G1 G3 G4 l3 P2 P1 λ F1 P3 P4 hp T1 λ F3 M3i T2 T3 T3i i i T3D T3S F3i λ F2 i F2 h3 G1 G2 G3 i -1 T2D i T2Si G4 T2D Gi h3 λ F1 h2 i F1 i T 1S i T1D h2 h1 h1 bi i +1 T2S T4 4. Shear walls – influence of the unit shape and bond pattern Experimental results Dry block masonry (Giuffrè et al.) Collapse mechanisms and limit slope angle b λ= For varying: •Bond pattern •Wall slenderness b l=tanb 4. Shear walls – continuum models homogenization of elastic brick and damaging interfaces Luciano e Sacco, 1997 4. Shear walls – Multiscale limit analysis – influence of the bond pattern Admissible macro-stress fields (Suquet, 1983) q0 sP sP Macro S,E micro s,e q0 S hom • Alpa Monetto, 1994, Alpa, Gambarotta et al 1996 De Buhan, De Felice, 1997 S b, S m unbounded, S i Coulomb Lower bound ⎧ sL = max ( ss ) , ⎪ ⎪CΣV = c, ⎨ ⎪QΣV − ss q = q 0 , ⎪ YT Σ ≤ y. V ⎩ • Milani et al, 2005 S b, S m Mohr-Coulomb – cut-off S i not active sP ⎧ ⎪ ⎪ ⎪ ⎪⎪ = ⎨Σ ⎪ ⎪ ⎪ ⎪ ⎩⎪ 1 ⎧ ⎫⎫ x t Σ = ds ⊗ ⎪ ⎪⎪ A ∂∫E ⎪ ⎪⎪ ⎪divσ = 0 ∀x ∈ E ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ = ∀ ∈ n 0 x σ I ⎨ ⎬⎬ ⎪σn anti-periodico su ∂E ⎪⎪ ⎪ ⎪⎪ α α S ∈ ∀ ∈ α x x σ E , =b, m ⎪ ( ) ⎪⎪ ⎪ ⎪⎪ i ⎪⎩σ ( x ) ∈ S ∀x ∈ I ⎭⎪⎭⎪ Dual kinematic definition of Shom q0 FE discretization • Equilibrium model Upper bound ( ) ⎧ sU = min ( sk ) = min −q T0 I a + z T λ , ⎪ ⎪Ba - Z T λ = 0 ⎪ ⎨ Aa = 0, ⎪ T ⎪q I a = 1, ⎪ ⎩λ ≥ 0 . sP q0 • Compatible model Anderheggen e Knöpfel, Sloan & coworkers, Pastor et al., Maier & coworkers…. …… 4. Shear walls – Multiscale limit analysis – influence of the bond pattern Homogenized failure surface Milani et al., 2005 Collapse mechanism (U.B.) Catania Building Brencich et al, 2000 4. Shear walls • In-plane model non-local continuum model able to take into account the scale effect unit size/structure/size, high gradients of the micro-stress field, regolarization of damage model Besdo, Műhlhaus, Rizzi, Trovalusci, Masiani, Salerno….. Trovalusci e Masiani, IJSS, 2005 • Out-of-plane models Elastic models Cecchi e Sab, 2002, 2004, Limit analysis: Discrete models: Orduna e Lourenco, 2005 Continuum models: Sab, 2003, Milani e Tralli, 2005 4. Shear walls • Out-of-plane collapse - multiscale models Cecchi et al., 2006 Dissipation Power Internal forces Shearing Mechanisms Flexural & Torsional Mechanisms Elementary deformations of the Representative Volume Element 4. Shear walls • Out-of-plane collapse - multiscale models Cecchi et al., 2006 Out-of-plane Collapse Perforated shear wall Collapse Mechanism 5. Domes S. Pietro Dome in Roma Poleni Michelangelo Della Porta e Fontana, 1590 Boscovich, Le Seur, Jacquier, 1743 Poleni, 1748 – Vanvitelli Burri, Beltrami, Di Stefano, Como Statically admissible stress fields Collapse mechanism by the “Tre Mattematici” Least abutment thrust, Como Elastic NTR solution Como Dome-drum interaction: Basilica di Carignano in Genova (G. Alessi, 1540-1600) Crack pattern in the inner dome (from below) Basilica di Carignano: Safe theorem Statically admiddible states Hypotheses • NTR material • Infinite compressive strength • No sliding failures admitted Equilibrium of a slice Loads: • masonry weight γ=17 kN/m3 • lantern weight P=1200 kN/16 Search for thrust surfaces lying within the masonry Lantern weight distribution for the safe equilibrium state: 85% inner shell 15% outer shell Gambarotta et al., 2002 P Upper Bound Theorem If ∃ u ∈ KinAdm such that: W= ∫ B - b •u − dv + ∫ b •u + dv =Wa + Wres ≥ 0 The structure will collapse B+ (Romano e Romano, Romano e Sacco, Como) b - unit volume weigth u + - upward velocity u − - downward velocity 1. Local mechanism Inner and outer domes η1 = Wres Wa ≈ 2 >1 W <0 Overall Mechanism domes-drum int. Global mechanism 1. H η2 = Wres Wa ≈ 8.5 B F A Global mechanism 2. D η3 = Wres Wa ≈ 1.8 ÷ 7 E C Influence of the column compressive strength on the location of the centre of rotation of the drum slice FE Model –1/8 slice Problemi costitutivi Smeared crack localizzazione Concentrazioni di tensione Hypotheses: •elastic isotropic model •smeared cracking •crushing •small displacements [10-1 MPa] SHELLS: • elements • nodes DRUM: • elements • prismatic • tetrahedral 3907 • nodes TOTAL: • elements • nodes • d.o.f.s 4056 5922 17474 13567 7904 21530 13826 35000 Incremental analysis 1.5 Crushing sc=6MPa av/g 1.25 1 C B A ? 0.75 0.5 0.25 Vertical displacement of the lantern [cm] 0 0 Crack pattern State A 0.2 0.4 0.6 0.8 (inside) 1 1.2 1.4 1.6 1.8 (outside) 6. Influence of the construction sequence – structural growth 6. Influence of the construction sequence – structural growth Construction sequence considered σx σx Brown & Goodman, Gravitational stresses in accreted bodies, 1963 σy sx sy Gravity loads applied to the final configuration σy 6. Influence of the construction sequence – structural growth d λf du λ Ωλ βλ u ndλ u(s,β;λ) u(s,β+dβ=λ+dλ;λ+dλ) λ+dλ λ λ+dλ ndλ u(s,β;λ+dλ) Ωλ λ u(s,β;λ) 0 P λ β P Ω0 n α P0 λ Q ndλ β α ey x ex R0 P λ=β ey (a) x0 y ex Structural displacement rates ey ex x dragged displacement rates (a) Reference domain β E ( s, β ; λ ) = sym ( ∇u0 ( s, β ) ) + ∫ sym ( ∇g ( s, β ; λ ) ) γdλ + 0 Strain field ( ) + sym ( ∇u ( s, β ) ) + γsym ( g ( s, β ; λ = β ) − g ( s, β ; λ = β ) ) ⊗ ∇β + λ + ∫ sym ( ∇g ( s, β ; λ ) ) γdλ. β Stess field Bacigalupo et al., 2007 T ( s, β ; λ = λ f ) = λf ( E ( s, β ; λ = λ ) − E ( s, β ; λ = β ) ) = ∫ sym ( ∇ ( g ( s, β , λ ) ) ) γdλ β f t (b) 6. Influence of the construction sequence – structural growth Normal stresses at springing Example: Triumphal arch 0.80 M.C.C λf M.S.C1 M.S.C2 0.60 λ h λ 0.40 n 2b β 0.20 Growth ignored ey s 0.00 R0 π/3 ββ ==00 1.00 -0.40 0.50 Growth included 0.00 ϑϑ == 30 -0.20 -0.50 θ ex -1.00 α t -1.50 P 0 σ ϑϑ ( MPa ) Displacement field Tangential component β ( m) ϑ ( deg ) Bacigalupo et al., 2007 7. Problems & prospects • Discrete & Continuum models: regular versus random masonry pattern (thickness??, real masonry); homogenization: size effect –> unit – RVE – wall size; interface model: brick unit – mortar layer interaction; cohesion: strain localization, non-unique incremental solution •Damage-frictional models seem to be necessary to understand the masonry wall response to orizontal varying forces. What is the role of perturbations to the reference state due to settlement, construction sequence etc? • NTR based model are simple and efficient when static loads inducing moderate axial forces are considered. Can comparable simple models be found for high compressive axial forces and time varying loads? •The fill and spandrel walls notably increase the load carrying capacity of arches and masonry bridges: how this effect can be simply included in assessment procedures? • Incremental analysis (the reference state often is not well described) or Limit analysis (masonry is far from to be ductile)? • What simplified procedures for the seismic assessment of buildings and bridges? • Mechanical decay in the long term. • etc. etc……………………………………