Celle solari «dye» su larga area: dall’organico alla perovskite Aldo Di Carlo CHOSE – Center for Hybrid and Organic Solar Energy Polo Solare Organico – Regione Lazio University of Rome «Tor Vergata» (Italy) and DYEPOWER, Rome [email protected] “New” manufacture processes Conventional Electronics Conventional semiconductor industry High temperature, doping, vacuum Large enterprises Organic Electronics Printing methods Liquid deposition SME and local production NREL: Best Organic Research-Cell Efficiencies Efficiency (%) Perovskites a-Si DSC Outline • Stabilized Large Area Dye Solar Cell (DSC) modules for BIPV • Large area Perovskite modules C. Barolo, C. Bignozzi, R. Boaretto, T.M. Brown, L. Bonandini, E. Busatto, S. Caramori, D. Colonna, G. De Angelis, A. Di Carlo, F. Giannini, A. Guglielmotti, A. Guidobaldi, A. Lanuti, A. Lembo, D. Magistri, P. Mariani, V. Mirruzzo, S. Penna, S. Pietrantoni, D. Prencipe, A. Reale, R. Riccitelli, A. Smarra, G. Soscia, R. Tagliaferro, L. Vesce, G. Viscardi Dyepower (Italy) DSC: Color, transparency and applications The Pilot Production Line • The semi-automated Pilot Production Line has been installed @ Dyepower R&D Center (Fonte Nuova, Rome) • It allows the production of the basic A4 size modules and of the large area strings/panels (made with A4 modules composition) • The pilot line is design for an overall throughput of 10.000 Sqm/Year. • Automation permits the repeatability of the production processes. This will solve the critical aspects for the industrialization route. Colors … Green Bronze Yellow Orange Red Purple 0.0 Z907 Current (A) -0.1 EL1 -0.2 EL2 -0.3 0 2 4 6 V [V] 8 10 12 14 Electr Voc [V] Isc [mA] Jsc [mA/cm2] Pmax [W] Fill Factor [%] Efficiency [%] EL1 13.49 223.37 8.77 1.83 61.51 3.8 EL2 13.1 306.5 12.0 2.32 57.7 4.8 How to scale up ? Plug’n Scale (Dyepower patent) + + + = Series connection 1 2 3 4 5 6 7 The first release of the string had 7 A4 modules connected in series. The output power is 25 W/sqm with an overall transparency of 25%. Is DSC modules stable ? IEC 61646 tests 0.9 0.8 0.7 EDP01 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0 50 100 150 200 250 300 Time (h) 1.0 Normalized Efficiency 0.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Normalized Efficiency Normalized Efficiency 1.0 0 0.8 Dye = Z907 50 100 150 Time (hours) F538C553 F532C547 0.6 0.4 0.2 0.0 0 200 400 600 Time (hours) 800 1000 200 DEff < 5% 250 300 Stable electrolyte: EDP01 5 85 oC stress Polymeric Electrolyte Eff (%) 4 3 2 Electrolyte 1 0 0 200 400 600 Time (h) HSE Ionic Liquid - SoventFree EDP01 (Dyepower) 800 1000 A new electrolyte (EDP01) have been developed to stabilize the cell without compromising the module efficiency. Results are on master plates Thixotropic gel Liquid Hybrid organic/inorganic perovskite from cells to modules F. Matteocci, S. Razza, F. Di Giacomo, S. Casaluci, A. Palma, N. Yagobinia, T. M. Brown, A. Reale, F. Brunetti, A. D’Epifanio, S. Licoccia, A. Di Carlo NREL: Best Organic Research-Cell Efficiencies Efficiency (%) (Seok II HOPV 2014) 20.4% a-Si The breaktrough in Hybrid Organic/inorganc solar cell is due to a «new» material: Organometal trihalide perovskite In two years Perovskite Solar Cells have improved from 9.7 % up to 20.4 % ! A similar progress has never been observer in photovoltaic technology Organometal trihalide Perovskite Organometal trihalide perovskite A=CH3NH3(+) ; B= Pb(+); X= I(-), Cl(-), Br(-) A B C CH3NH3-Pb-I3 CH3NH3-Pb-I3 Direct band gap of 1.51 eV for CH3NH3PbI3 Perovskite Baikie et al. J. Mater. Chem. A, 2013, 1, 5628 Mesostructured vs Planar Easier perovskite grown Better charge collection Easier perovskite grown Better charge transport Less production step No sintering step Boix, P. P., et al.Materials Today 17(1): 16-23. Perovskite solar cells (small area) J [mA/cm2] 0.0 0 -5 0.2 V(V) 0.4 0.6 0.8 VOC= 0.81V JSC= -18.163mA/cm^2 -10 FF= 71.3% PCE= 10.5% Area= 0.1cm^2 -15 HTM = P3HT -20 Di Giacomo, et al. J. Power Sources 251, 152 (2014), A. Di Carlo et al. Proc. IEEE Nanotechnology 2014 Perovskite module: Fabrication 1.0 Typical fabrication process F. Matteocci, et al Phys. Chem. Chem. Phys., 16 (2014) 3918 Perovskite modules 1.0 V(V) 1 2 3 0 -5 -10 -15 -20 -25 -30 -35 -40 4 5 Eff.= 5.1% Module Best Cell Stability 6 5 Efficiency (%) I [mA] 0 October 2013 4 3 2 1 0 0 300 600 900 1200 Shelf Life Time (Hours) F. Matteocci, et al Phys. Chem. Chem. Phys., 16 (2014) 3918 16.8cm2 Perovskite modules 2.0: optimized fab proc. Voltage (V) 0.0 0 Current (mA) -5 -10 -15 -20 0.5 1.0 1.5 2.0 2.5 3.0 Three CH3NH3PbI3-xClx hybrid perovskite modules 3.5 PCE: 7.7% FF: 0.78 Jsc= 11.7mA/cm2 VOC=3.36V Area= 11.52 cm 2 -25 -30 March 2014 Eff= 7.7%, 11.52 cm2 -35 IV characteristic of series-connected Perovskite based module of Fig. 1. 1 SUN AM1.5 G illumination Eff= 13%, 10.1 cm2 June 2014 A. Di Carlo et al. Proc. IEEE Nanotechnology 2014, F. Matteocci, et al. Prog. Photovoltaics submitted (2014) Scaling-up of perovskite modules (166 cm2) LBIC S. Razza, et al. submitted (2014) Conclusion • • • • • Most critical IEC 61646 tests (UV, HF, DH) have been successfully passed with DSC modules produces on pilot line Dye Solar cells are quite mature to enter into the market (BIPV and indoor). Open issue: improve (stable) efficiency, stable Green/Blue dyes are still missing Hybrid Perovskite materials are becoming very important for solution process optoelectronics (results on Photodiodes are very promising) We have demonstrated that such technology can be scale to module size dimension – – – – • Q2/2013 Eff. 5.1% (CHOSE - Italy) Q1/2014 Eff. 8.6% (KRITC - Korea) Q2/2014 Eff. 13.0 % (CHOSE - Italy) ….. Open questions: – Pb-free perovskite – Stability PRIN DSSCX Funds CHEETAH FP7 DESTINY GO-NEXT