UNIVERSITÀ DI UNIVERSITÀ DI PISA GRUPPO DI RICERCA NUCLEARE GRUPPO DI GRUPPO RICERCA NUCLEARE – SAN PIERO A GRADO (GRNSPG) RICERCA NUCLEARE – SAN PIERO A GRADO (GRNSPG) JULES HOROWITZ REACTOR Il reattore sperimentale per applicazioni scientifiche e industriali 10 Novembre 2011 ENEA - Via Giulio Romano 41, Roma Competenze Italiane Utili per il Italiane Utili per il Progetto JHR il Progetto JHR e Progetto JHR e e Competenze Competenze Italiane Utili per Opportunità di Ricerca per il Opportunità di Ricerca per il Mondo Accademico Mondo Accademico Adorni Dino Araneo, Araneo Nikolaus Muellner, Muellner Francesco D D’Auria Martina Adorni, Auria Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless the University of Pisa – San Piero a Grado Nuclear Research Group has provided its prior and written consent. This document and any information it contains shall not be used for any other purpose than the one for which they were provided. Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations. JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado The GRNSPG The San Piero a Grado Nuclear Research Group Born in December 2003, aims at maintaining and improving the , g p g Italian competences in the field of the nuclear technology – with particular reference to Nuclear Power Plants. Performs R&D, engineering services, education and training activities, according to the tradition of the Department of Mechanics Nuclear and Production Engineering (DIMNP) and Mechanics, Nuclear and Production Engineering (DIMNP) and of the University of Pisa (UNIPI). Led by Prof. Francesco D Led by Prof. Francesco D’Auria, Auria, involves more than 60 people involves more than 60 people (mostly PhD level) among full‐ and part‐time staff and International Experts. Located in a high‐tech, comfortable and well‐connected site, shared with other research labs (e.g. BIOLAB, INFN). JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 2/10 JULES HOROWITZ REACTOR FONESYS Q Quality y Assurance Education dT i i and Training Networks of E ll Excellence GRNSPG Editorial ti iti activities Nuclear Reactor Technology: Safety &D i & Design Innovation AVAILABLE CODES Relap5/3D © ANSYS-CFX-10.0 3D NK - Nestle XSEC derivation Rel evant ph ph. Criteria & Acceptabili ty Thres holds TransUranus Phenomena consideration Most suited (BE) code Consideration of qualification: Nodalization development - Code - Nodalization - User 3 4 5 6 Select Accept. Criteria 2 Assumptions on BIC Criter ia Criteria 7 SA Computational Platform Analysis CA Coupling with the SYS TH code RA Purposes 8 9 Scenario selection Atucha II Safety Margins Performing the analysis U Quantification ? 1 Uncertainty and sensitivity studies Acceptability criteria CA 10 11 RA FSAR CIAU & BF method EM/Component Stress An. Results Diagram 15.0-1: International Organizations Transient core power distribution EM/Radiological Consequences CFD CFX Boron distribution in moderator tank Linear Heat Rate (kW/m) LA LD 300 LG 250 AL 200 150 AC Y 100 AF 50 AK 15 18 21 24 30 BE 33 3 6 9 X 36 27 BB 39 12 0 42 TH RELAP5-3D© Linear heat rate Fast neutron flux 2 3 4 5 6 7 8 9 10 11 12 1 3 1 4 15 16 17 18 19 20 21 2 2 2 3 24 25 26 27 28 29 30 3 1 3 2 33 34 35 36 37 38 39 4 0 4 1 42 43 44 Analysis of AOO/DBA/SBDBA Cladding temperature Coolant pressure 45 1 277 265 257 52 8 5 28 BB 7 518 BA 8 512 BL 9 512 AK 10 5 21 517 511 503 AG 12 496 489 493 493 487 AC 16 488 AB 17 48 2 AA 18 527 51 6 L D 25 524 44 6 438 L C 26 436 428 42 1 42 4 4 29 421 416 4 08 295 294 40 8 40 5 4 08 401 404 4 10 395 3 98 7 BB 325 8 BA 3 25 332 331 330 1 0 AK 1 1 AH 3 42 3 41 340 347 354 9 BL 3 35 3 34 333 340 340 346 355 1 2 AG 3 43 3 49 1 5 AD 3 50 3 56 Fuel Performance/Behavior 1 7 AB 1 8 AA 1 9 AL 2 0 LK 363 372 378 380 900 1 6 AC 3 57 364 371 371 38 2 1 3 AF 1 4 AE 3 48 354 354 362 362 36 8 38 1 3 90 324 323 330 339 35 5 36 1 36 9 37 7 3 77 316 315 323 32 9 33 9 34 5 35 5 3 70 3 86 3 88 314 31 3 32 2 32 1 33 9 3 52 3 61 3 70 3 76 3 85 396 31 3 3 29 3 38 3 45 3 59 3 76 388 394 31 2 3 20 3 20 3 28 3 52 385 387 5 BD 6 BC 30 7 3 12 3 11 3 19 3 38 3 67 367 375 393 401 3 05 3 04 345 360 367 384 392 30 6 3 08 3 11 319 327 353 375 384 40 0 40 2 303 319 337 344 360 375 39 2 40 0 304 310 310 327 351 38 4 39 2 2 99 3 03 302 301 310 336 34 4 36 6 38 3 40 2 4 BE 297 296 301 30 1 31 8 35 8 39 1 40 0 4 09 416 415 414 28 7 30 0 32 6 34 4 37 4 4 09 4 09 412 29 4 29 4 29 3 30 9 3 65 3 99 4 07 411 298 289 289 28 7 28 7 2 93 3 17 3 91 3 99 407 416 422 28 8 2 80 2 50 3 91 406 411 413 3 BF 291 29 0 28 8 2 86 2 86 2 93 250 411 411 411 420 42 3 L A 28 2 80 278 250 250 250 418 419 419 2 79 279 271 250 250 417 425 418 419 29 2 28 4 28 1 2 80 272 271 266 250 250 432 425 42 7 4 31 271 271 251 456 432 43 2 42 6 42 7 28 5 2 82 2 81 274 267 259 251 504 48 3 44 8 42 6 4 30 L B 27 268 267 259 25 1 51 3 46 5 43 3 4 26 4 28 2 BG 2 83 275 275 273 268 26 0 52 2 49 7 43 9 4 40 4 33 4 33 437 26 2 26 0 4 83 4 57 4 40 434 435 277 276 275 269 268 25 2 5 23 5 05 4 75 4 49 449 440 441 442 442 2 60 5 14 4 90 483 466 449 443 443 2 52 5 23 514 499 476 458 458 450 444 26 9 26 2 2 52 523 506 492 484 466 458 450 44 5 253 525 499 477 459 45 9 45 1 269 2 63 2 61 514 506 506 491 484 467 46 8 45 2 4 47 526 515 509 498 47 7 46 0 45 1 4 52 4 53 270 2 64 261 254 526 515 50 0 49 1 48 4 47 8 4 61 4 62 454 455 L E 24 256 255 524 50 9 49 4 4 68 4 69 462 463 464 50 7 5 00 4 78 4 78 469 470 471 464 4 94 4 85 479 479 472 473 474 4 94 493 486 479 481 480 AL 19 L K 20 L H 21 L G 22 L F 23 51 6 5 08 5 01 501 AF 13 49 5 AE 14 AD 15 52 0 5 19 5 10 510 502 AH 11 258 52 9 3 73 2 1 LH 373 38 9 2 5 LD 3 97 2 6 LC 3 4 5 6 7 8 9 10 11 12 1 3 1 4 15 16 17 18 19 20 21 2 2 2 3 24 2 8 LA 25 26 27 28 29 30 3 1 3 2 33 34 35 36 37 38 39 4 0 4 1 42 43 44 45 Depletion PUMA Burn up 800 Oxidation at high temperature 700 ~ 1000°C 000 C B ittl Failure Brittle F il 1000 TRANSURANUS 2 7 LB 403 414 29 2 1400 2 3 LF 2 4 LE 29 1 1200 2 2 LG 379 38 9 600 ~ 500 kW/m Embrittlement of Cladding 800 500 400 600 - NUMBER OF FAILED RODS 300 400 200 Burnup distribution Linear Heat Rate 1 1 BG 2 BF 3 BE 4 BD 5 BC 6 Temperaturee Experimental Activities Simplified flowchart for the proposed BEPU approach for Atucha II accident analysis 3D-NK NESTLE 45 Grup ppo Riceerca Nu ucleare San Pieero a Grrado The GRNSPG world of competence - FUEL SAFETY CRITERIA 100 0 0 1 2 3 4 5 6 7 8 9 Time [s] # and id of failed rods JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 200 Possible fracture during quenching Ballooning / Rupture 0 Fission Release and Transport Dose calculations MELCOR MAACS 3/10 10 JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado Specific Competences Related to RRs International Projects: ¾ ¾ ¾ ¾ IAEA expert missions P ti i ti t C di t d R Participation to Coordinated Research Projects hP j t Participation to Benchmarks Preparation of Technical Documents OECD Activities: ¾ Working Group on Fuel Safety Working Group on Fuel Safety ¾ Participation to Benchmarks Pubblications: ¾ More than 15 in International Journals ¾ More than 30 Conference Proceedings More than 30 Conference Proceedings ¾ More than 20 Technical Reports JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 4/10 JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado NUTEMA Nuclear Power Plant Technology Knowledge Management System or Nuclear Technology Master Goal Æ INTEGRATED SYSTEM CAPABLE OF MANAGING THE OVERALL NPP/RR KNOWLEDGE AND EXPERTISE NEEDED FOR A SAFETY USE OF NUCLEAR TECHNOLOGY THROUGH THE FULL LIFE OF AN NPP/RR Main target Æ Utilities: • • • • • • • NPP KNOWLEDGE CONSTRUCTION MANAGEMENT MODIFICATION MANAGEMENT OPERATION & MAINTENACE MANAGEMENT LICENSING PERSONNEL SO LEARNING G DESIGN AUTHORITY ROLE Principle Æ Defense Defense-In-Depth In Depth JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 5/10 JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado NUTEMA NUTEMA NUTEMA DATABASE DISCIPLINES NPP LIFETIME & Nuclear Power Plant Technology Knowledge Management System COMPUTATIONAL TOOLS COMPUTATIONAL TOOLS Or WORKING MODES Nuclear Technology Master Nuclear Power Plant Technology Knowledge Management System BComponents, Materials OBJECTIVE L Financing S Structural Mechanics TO MANAGE AND TO PRESERVE THE KNOWLEDGE Or /TARGETS Structures t - DMS ASSOCIATED WITH DESIGN, CONSTRUCTION AND OPERATION OF NPP COMPLEX SYSTEMS & St T Neutron Physics M Design Nuclear Technology Master ThermalDESIGN AUTHORITY U IRIDM N Construction ‐ CRISIS CENTER SCOPE CENDF or (IAEA INSAG‐19) /INSPIRATION hydraulics (IAEA INSAG‐25) support support EMERGENCY PREPARADNESSS BASES O Commissioning DNJOY V Radioprotection E MCNP P Operation O ti NUCLEAR INDUSTRY ACTORS END USERS NAMELY UTILITIES W Civil Engineering F TRANSURANUS Q Safety & TO MANAGE AND TO PRESERVE THE KNOWLEDGE GANSYS X Electronics Licensing DATABASE HRELAP WORKING ASSOCIATED WITH DESIGN, CONSTRUCTION AND OPERATION OF NPP COMPLEX SYSTEMS DISCIPLINES NPP LIFETIME Y Informatics & MODES R Decommissionin eco ss o COMPUTATIONAL TOOLS I NESTLE Z Chemistry g J MACCS –RODOS BComponents, Materials AA …. L Financing Mechanics K… DESIGN AUTHORITY IRIDMS‐Structural INTEGRATED RISK CRISIS CENTER & Structures - DMS INTEGRATED RISK INFORMED DECISION MAKING OBJECTIVE /TARGETS SCOPE /INSPIRATION BASES END USERS M Design T Neutron Physics Q Safety & Licensing R Decommissionin g W Civil Engineering X Electronics Y Informatics Z Chemistry AA …. U Thermalor N ConstructionINFORMED DECISION MAKING (IAEA INSAG‐19) CENDF hydraulics O Commissioningg DNJOY (IAEA INSAG 25) support E MCNP EMERGENCY PREPARADNESSS support P Operation (IAEA INSAG‐25) support EMERGENCY PREPARADNESSS V Radioprotection INTERACTIVE TRAINING TRAINEE F TRANSURANUS GANSYS HRELAP I NESTLE J MACCS –RODOS K… NUCLEAR INDUSTRY ACTORS SUPERVISOR INSTRUCTOR NAMELY UTILITIES INTERACTIVE TRAINING TRAINEE SUPERVISOR INSTRUCTOR JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 6/10 JULES HOROWITZ REACTOR Identification of Interfaces between Computational Tools Chain of Codes as used in CNA-2 FSAR Chapter 15 «Accident Analysis» 3D-NK NESTLE Transient core power distribution p CFD CFX Boron distribution in moderator tank Linear Heat Rate (kW/m) LA LD 300 LG 250 AL 200 150 AC Y 100 AF 50 0 42 45 30 33 BE 36 X 39 18 21 24 27 3 6 9 12 AK BB 15 TH RELAP5-3D© Linear heat rate F t neutron Fast t flux fl 2 3 4 5 6 7 8 9 Cladding temperature Coolant pressure 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 1 1 BG 2 277 BF 3 265 BE 4 257 BD 5 528 BC 6 528 BB 7 518 BA 8 512 BL 9 512 AK 10 521 517 511 503 AH 11 502 AG 12 501 AF 13 495 AE 14 496 489 AD 15 493 493 487 AC 16 488 AB 17 482 AA 18 486 481 480 AL 19 474 LH 21 LF 23 455 453 LE 24 452 447 LD 25 444 445 446 LC 26 442 442 438 466 434 435 436 LB 27 426 428 428 437 427 419 411 409 412 416 422 410 360 400 360 367 359 388 394 401 386 12 AG 11 AH 343 354 356 14 AE 350 16 AC 900 15 AD 357 F lP Fuel Performance/Behavior f /B h i 17 AB 18 AA 364 19 AL 20 LK 363 372 378 380 13 AF 349 348 354 371 371 381 342 362 362 382 390 398 347 355 361 9 BL 10 AK 341 340 354 368 377 377 388 395 396 355 369 370 376 385 340 346 335 334 333 340 355 361 370 376 385 393 404 345 7 BB 331 339 8 BA 325 332 330 339 352 367 367 387 401 405 345 6 BC 330 339 325 324 323 329 338 352 375 384 392 402 408 345 375 384 392 321 328 316 315 323 322 329 338 353 375 384 400 402 408 344 366 383 320 327 5 BD 314 313 312 320 319 337 351 392 409 408 416 415 414 374 400 409 327 344 391 399 407 319 307 313 312 311 311 319 336 358 391 399 411 416 344 391 406 318 326 365 407 413 421 420 423 250 411 411 419 421 424 250 411 418 418 309 310 306 308 305 304 304 310 310 299 303 303 302 301 301 4 BE 297 296 295 294 301 300 317 250 417 425 419 293 250 432 432 293 298 289 289 287 294 294 293 250 250 425 427 431 430 429 LA 28 448 426 426 250 250 432 433 433 286 278 250 456 439 440 433 251 483 457 449 271 291 290 288 287 287 286 3 BF 292 284 281 288 280 279 279 266 504 465 440 440 441 513 483 449 449 443 259 285 282 280 280 272 271 267 251 497 475 458 458 443 505 483 466 450 450 251 522 490 476 458 459 451 499 484 467 459 451 523 514 492 477 468 460 452 499 484 478 461 462 514 283 281 274 271 271 267 259 2 BG 277 275 275 273 268 268 260 252 276 275 269 268 262 260 252 523 506 491 477 468 469 454 498 484 478 462 463 506 269 262 260 252 523 514 506 491 478 469 470 464 494 485 479 471 464 509 500 494 479 472 473 LK 20 LG 22 494 493 479 507 269 263 261 253 525 526 515 270 264 261 254 524 526 515 509 500 256 255 524 527 516 516 508 501 258 529 520 519 510 510 373 373 21 LH 24 LE 25 LD 27 LB 403 28 LA 414 3 4 5 6 7 8 9 700 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Depletion PUMA up Burn ~ 1000°C Brittle Failure 1000 TRANSURANUS 26 LC 29 2 800 Oxidation at high temperature 23 LF 379 389 389 397 29 1 1400 1200 22 LG 600 ~ 500 kW/m Embrittlement of Cladding 800 500 400 600 - NUMBER OF FAILED RODS 300 400 200 Burnup distribution Linear Heat Rate 1 y of AOO/DBA/SBDBA Analysis Temperature Grup ppo Riceerca Nu ucleare San Pieero a Grrado Features of the System - FUEL SAFETY CRITERIA 200 Possible fracture during quenching Ballooning / Rupture 100 0 0 0 1 2 3 4 5 6 7 8 9 10 Time [s] # and id of failed rods Fission Release and Transport p Dose calculations MELCOR MAACS JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 7/10 JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado The System JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 8/10 JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado The System STATUS: The working modality as the database and/or management of computational tools have been proved at the present time, including a few thousands files (data base), a couple of dozen system codes and a few tens of input decks installed. The mode of p y p operation “Safety” is possible. JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 9/10 JULES HOROWITZ REACTOR Grup ppo Riceerca Nu ucleare San Pieero a Grrado Conclusions NUTEMA constitutes an integrated system capable of managing the overall NPP/RR knowledge and expertise needed g g g p for a safety use of nuclear technology. The exploitation of the planned capabilities of NUTEMA will require an additional effort. However in the existing configuration the system may already be used to support the Jules Horowitz Reactor analysis, including training and qualification for any level staff. UNIPI‐GRNSPG is interested in material testing, and can contribute with the design and analysis of results due to the importance for the development and the qualification of materials and nuclear fuel used in the nuclear industry. i l d l f l di h l i d UNIPI‐GRNSPG will contribute providing man‐power. JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 10/10 Grup ppo Riceerca Nu ucleare San Pieero a Grrado JULES HOROWITZ REACTOR THANKS FOR YOUR ATTENTION! [email protected] d i@i i i it JULES HOROWITZ REACTOR, 10 Novembre 2011, ENEA ‐ Via Giulio Romano 41, Roma 11/10