LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS www.labsmech.polimi.it PROGETTAZIONE DEL MICROAMBIENTE Gabriele Dubini, Elena Bianchi, Francesca Nason XXXII Scuola GNB “Approccio integrato per la medicina rigenerativa”, Bressanone, 16-19 settembre 2013 What microfluidic environment is induced on cells? A quantitative understanding of the interplay among: • pore geometry • culture medium flow behaviour • nutrient/waste mass transport • cellular behaviour (proliferation/migration) at the cell scale is required for rational design of scaffold materials and bioreactor systems Pietrabissa, CMBBE , Porto, 2008 G. Dubini - Progettazione del microambiente A pioneering CFD analysis 89 100 shear stress [mPa] 150 pore dimension [µm] 50 59 scaffold porosity [%] 65 77 27.0 24.3 21.6 16.2 13.5 10.8 8.1 5.4 2.7 0.0 Boschetti et al. J Biomechanics, 2006 G. Dubini - Progettazione del microambiente An example of state-of-the-art scaffold CFD analysis Representative pressure distribution at inlet and outlet crosssections used to calculate (A) the pressure drop and (B) the velocity distribution in the modelled region of interest for the HR-SP model. The data are shown for the high-porosity scaffold for an inlet velocity of 0.1 mm s−1. Truscello et al., Acta Biomater., 2012 G. Dubini - Progettazione del microambiente Outline The micro / nano scale environment Cell size vs channel size Parameters from ‘macroscopic’ transport phenomena Local fluid dynamics and cell adhesion Examples Concluding remarks G. Dubini - Progettazione del microambiente The micro / nano scale environment G. Dubini - Progettazione del microambiente Comparison between volume densities of culture conditions in traditional, macroscale culture in 6-well plates and in microscale, microchannel culture (750 µm wide, 5 mm long, and 250 µm tall). Paguirigan and Beebe, BioEssays, 2008 G. Dubini - Progettazione del microambiente 1 mm 1 mm3 = 1 µl 100 µm 106 µm3 = 1 nl 10 µm 103 µm3 = 1 pl G. Dubini - Progettazione del microambiente A counter-intuitive effect in microfluidics: the bottleneck effect D, L 1 𝜕𝜕 𝐾𝑠 = − 𝑣 𝜕𝜕 d, l 𝑠 = 49 × 10−11 𝑃𝑃−1 128𝜇𝜇 ∆𝑃 = 𝑄 𝜋𝑑 4 32𝜇𝜇𝐷 2 𝐿𝐾𝑠 ∆𝑡 = 𝑑4 𝜇 = 10−3 𝑃𝑃 ∙ 𝑠, 𝐿 = 10 𝑐𝑐, 𝐷 = 1 𝑐𝑐, 𝑙 = 1 𝑐𝑐, 𝑑 = 1 𝑚𝑚 G. Dubini - Progettazione del microambiente ∆𝑉 𝑄∆𝑡 ∆𝑃~ = 𝑉𝐾𝑠 𝜋 𝐷 2 𝐿𝐾𝑠 4 ∆𝑡~ 0 𝑠 A counter-intuitive effect in microfluidics: the bottleneck effect D, L 1 𝜕𝜕 𝐾𝑠 = − 𝑣 𝜕𝜕 d, l 𝑠 = 49 × 10−11 𝑃𝑃−1 128𝜇𝜇 ∆𝑃 = 𝑄 𝜋𝑑 4 32𝜇𝜇𝐷 2 𝐿𝐾𝑠 ∆𝑡 = 𝑑4 𝜇 = 10−3 𝑃𝑃 ∙ 𝑠, 𝐿 = 10 𝑐𝑐, 𝐷 = 1 𝑐𝑐, 𝑙 = 1 𝑐𝑐, 𝑑 = 10 𝜇𝑚 G. Dubini - Progettazione del microambiente ∆𝑉 𝑄∆𝑡 ∆𝑃~ = 𝑉𝐾𝑠 𝜋 𝐷 2 𝐿𝐾𝑠 4 ∆𝑡~𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Capillary pressure Pcap > Patm Pcap < Patm Hydrophilic microchannel 100 µm (water-air): Pcap = 0,015 bar Nanochannel 100 nm (water-air): Pcap = 15 bar G. Dubini - Progettazione del microambiente Definition Range of channel dimension Conventional channels Dh > 3 mm Minichannels 3 mm ≥ Dh > 200 µm Microchannels 200 µm ≥ Dh > 10 µm Transitional microchannels 10 µm ≥ Dh > 1 µm Transitional nanochannels 1 µm ≥ Dh > 0,1 µm Nanochannels Dh ≤ 0,1 µm = 100 nm 4𝐴𝑡 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐷ℎ = 𝑝 G. Dubini - Progettazione del microambiente Design considerations for microflows: driving force for fluid motion and the channel characteristics can be chosen independently A flow driven by either a pressure gradient, an electric field, or a surface tension gradient. A surface modified chemically in stripes. A surface modified with topography. Stone et al. Annu. Rev. Fluid Mech., 2004 G. Dubini - Progettazione del microambiente An early integrated device with two liquid samples and electrophoresis gel present Blue, liquid sample (ready for metering) Green, hydrophobic surfaces Purple, polyacrylamide gel Burns et al., Science, 1998 G. Dubini - Progettazione del microambiente Cell size vs channel size Microfluidic devices for manipulating fluids: a vast experience! What about fluids with suspended cells? G. Dubini - Progettazione del microambiente Ex. #1 - In vivo: Lymphocyte homing Ex. #2 - In vitro: Inflammation – Leukocyte adhesion cascade - THP1 adhesion to VCAM-1 at 0.5 dyn/cm² G. Dubini - Progettazione del microambiente Cell responses on surface chemistry of tissue engineering scaffolds: 1) surface hydrophobicity 2) protein adsorption 3) surface charge 4) surface roughness 5) surface softness and stiffness Pinning fluid–fluid interfaces by chemically inhomogeneous surfaces in static (c) and flowing systems (d). Altering the wetting properties using chemically homogeneous, micro- and nanostructured surfaces: (e, f ). (Gűnther and Jensen, Lab on a Chip, 2006) G. Dubini - Progettazione del microambiente Cell responses on architecture of tissue engineering scaffolds: 1) pore size of tissue engineering scaffold 2) porosity of tissue engineering scaffold 3) connectivity and tortuosity of tissue engineering scaffold 4) cell responses to dynamic scaffolds Schematic of the different pore types found in tissue engineering scaffolds (Wang et al., Tissue Engineering Part C Methods, 2010). G. Dubini - Progettazione del microambiente Determination of tortuosity through a porous material using the arc-chord ratio (O'Connell et al., BioMedical Engineering , 2010). Fluid dynamic approaches to cell suspensions • • • • • Navier-Stokes eq. for the sole carrier fluid Lagrangian approach (dilute suspensions) Two-phase flow Non-Newtonian flow Fluid-structure interaction G. Dubini - Progettazione del microambiente Parameters from ‘macroscopic’ transport phenomena 4𝐴𝑡 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐷ℎ = 𝑝 𝑚̇ 𝑀𝑀𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑈 = 𝜌𝐴𝑡 𝐷ℎ ∆𝑃 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 = 2𝜌𝑈 2 𝐿 6𝑈𝜇 𝑊𝑊𝑊𝑊 𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜏𝑤 = 𝜇𝛾̇ = 𝑠 G. Dubini - Progettazione del microambiente 𝑘𝐵 𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 = 6𝜋𝜋𝜋 𝑈𝐷ℎ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃 = 𝐷 ℎ𝐷ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆 = 𝐷 G. Dubini - Progettazione del microambiente Diffusivity characteristic time vs convective characteristic time Convective mass flux vs diffusive mass flux Analyte D (m2/s) Pe Na+ (100 pm) 10-9 10 Glucose 6×10-10 17 Albumine (BSA, 10 nm) 10-11 103 Viron (100 nm) 10-12 104 Bacterial Cell (1 µm) 10-13 105 Erythrocyte (10 µm) 10-14 106 Polystyrene Bead (100 µm) 10-15 107 Diffusivities and representative Péclet numbers for dilute analytes in water at 25 °C (100 µm wide channel, 100 µm/s mean velocity) Smith et al., Electrophoresis, 2012 G. Dubini - Progettazione del microambiente Local fluid dynamics and cell adhesion (a)-(d) Contours of fluorescent light intensity (FLI), which indicate bacterial concentration, plotted for RP437 E. coli at different time snapshots. (e)-(h) Bacteria collect in the vortex pair as shown by FLI contours overlaid on the flow streamlines (solid blue lines) (Yazdi and Ardekani, Biomicrofluidics, 2012). G. Dubini - Progettazione del microambiente PCTC: prostate circulating tumor cell 𝜌𝑝 𝐷𝑝 2𝑈 𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆 = 18𝜇𝐷ℎ G. Dubini - Progettazione del microambiente Particle time scale vs flow time scale Smith et al., Electrophoresis, 2012 Possible ways to bring cells in contact to a wall • rely on a diffusive process to cause cells to randomly move transverse to streamlines, • apply a body force (e.g., gravity or dielectrophoresis) to move the cells transverse to streamlines, • create geometries in the flow so that flow is accelerated, streamlines are compressed and the cells are effectively brought in proximity to the wall by motion along a streamline, • make the wall permeable and allow the streamlines to cross the interface. G. Dubini - Progettazione del microambiente Smith et al., Electrophoresis, 2012 G. Dubini - Progettazione del microambiente Presence of suspended cells ∆𝜌 𝑔𝐷ℎ 2 𝐵𝐵𝐵𝐵 𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵 = 𝜎 𝜇𝑈𝑑 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶 = 𝜎 𝜇𝑈𝑑 2 𝐷ℎ 𝑊𝑊𝑊𝑊𝑊 𝑁𝑁𝑁𝑁𝑁𝑁 𝑊𝑊 = 𝜎 G. Dubini - Progettazione del microambiente multiphase microflows Gravity vs interfacial forces Viscous vs interfacial forces Inertial vs interfacial forces Inertial, viscous and gravitational body forces, relative to interfacial forces, as a function of the channel size and characteristic velocity in microfluidic multiphase systems Gűnther and Jensen, Lab on a Chip, 2006 G. Dubini - Progettazione del microambiente Presence of suspended cells non-Newtonian fluids Strain rates can be large in the microflows. In the simplest case, τ ≈ U/h, which can yield 103 - 104 s−1. Such values are sufficiently large to cause non-Newtonian rheological effects, if suspended deformable objects are present. A well known effect - since 1929 - is the Fåhraeus effect for blood flowing in small tubes (I.D. < 0,3 mm). 𝑡𝑐 𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁𝑁𝑁 𝐷𝐷 = 𝑡𝑝 G. Dubini - Progettazione del microambiente Material stress relaxation time vs characteristic time scale A further issue: cell population dynamics Galbusera et al., Biomed. Microdevices,2008 G. Dubini - Progettazione del microambiente http://people.physics.anu.edu.au/~mak110/ Example 1: Shear-stress dependent leukocyte adhesion assays Bianchi et al. Journal of Biomechanics, 2012 G. Dubini - Progettazione del microambiente Schematics of a flow chamber (a), its computing model (b), a half computing model with active test region (c), micropatterned osteoblasts (d), and a unit with a single cell of computational model (e). In the current models, seven or fifteen units were placed in one row, and seven rows were used for simplicity of calculation (Cui et al. Ann. Biomed. Eng., 2011) G. Dubini - Progettazione del microambiente Example 2: Single cell trapping 100 µm 10 µm Kobel et al., Lab on a Chip, 2010 G. Dubini - Progettazione del microambiente Nason et al., COUPLED PROBLEMS 2013 G. Dubini - Progettazione del microambiente Example 2a: Red blood cells in microvessels Simulation of blood flow (Hct 30% and 95 ± 5 s-1shear rate; Dh = 19 µm (left) and Dh = 24 µm (right). The domains are cut at the centerplane of the vessels (Alizadehrad et al., Journal of Biomechanics, 2012). G. Dubini - Progettazione del microambiente Concluding remarks • the study of fluid dynamics of cell suspensions and the design of the microfluidic environment are challenging tasks • much information/expertise is available from other disciplines • the need for mechanical microenvironmental control in materials/devices for regenerative medicine can be met with an accurate design • physico-chemical and biochemical aspects not discussed here G. Dubini - Progettazione del microambiente