CORSO DI LAUREA INTERDIPARTIMENTALE IN PRODUZIONI ANIMALI Modalità per il conseguimento dell’idoneità di 3 CFU di “Lingua Inglese ad orientamento scientifico” Il conseguimento di tale idoneità si svolge in due fasi successive: 1) superamento del test idoneativo di Lingua Inglese LIVELLO B1 (o superiore) presso il CLA con le modalità indicate nell’home page del CLA (www.cla.it); 2) valutazione mediante esame orale di una adeguata conoscenza della Lingua Inglese desunta dalla lettura, comprensione, e colloquio di un testo scientifico attinente alle discipline del Corso di Laurea. Ulteriori informazioni relative al punto 2: - L’esame di Lingua Inglese a orientamento scientifico può essere sostenuto ESCLUSIVAMENTE dallo studente che ha superato il test idoneativo presso il CLA (o che è in possesso di adeguate certificazioni linguistiche di pari livello); questo test è valido per tutta la durata del corso triennale; - L’esame di Lingua Inglese a orientamento scientifico può essere sostenuto, oltre che nelle normali sessioni d’esami previste dal regolamento, anche durante lo svolgimento del secondo semestre del primo anno secondo un calendario predisposto dalla Segreteria Didattica previa prenotazione tramite SOL. - Il giorno dell’esame, all’ora e nella aula convenuta, lo studente avrà a disposizione 30 minuti di tempo per analizzare l’abstract che gli sarà consegnato dalla Commissione esaminatrice, integrata con la presenza di un CEL (Collaboratore Esperto Linguistico) del CLA. - Al termine, lo studente sarà invitato dalla Commissione a: • leggere in Inglese l’abstract fornitogli; • tradurlo in Italiano; • rispondere in lingua Inglese a semplici domande relative al suo contenuto e/o esporre in modo sintetico gli elementi caratterizzanti. Per conseguire l’idoneità lo studente deve dimostrare di avere una conoscenza della Lingua Inglese che gli consenta di interpretare correttamente l’argomento scientifico descritto e di esporlo in Inglese, anche in modo molto sintetico, a un potenziale interlocutore straniero. Gli abstract che la Commissione sottoporrà a ciascun studente saranno tratti da articoli pubblicati nel corso del 2014/15 dalle seguenti riviste consultabili in rete presso i siti in parentesi: a) Italian Journal of Animal Science (http://www.aspajournal.it/index.php/ijas) b) Journal of Animal Science (http://www.journalofanimalscience.org/) c) Journal of Dairy Science (http://www.journalofdairyscience.org) Lo studente, prima di iscriversi all’esame orale, è invitato a consultare un congruo numero di articoli delle riviste sopra citate al fine di acquisire la terminologia dell’Inglese scientifico necessaria alla comprensione degli stessi. Le stesse riviste sono consultabili presso le biblioteche dei Dipartimenti. DATE PER I COLLOQUI: 16 APRILE 2015, 23 APRILE 2015, 30 APRILE 2015, 7 MAGGIO 2015, 14 MAGGIO 2015 AULA VI POLO DIDATTICO ORE 16.00 ESEMPIO N.1 J Dairy Sci. 2014 Mar 5. pii: S0022-0302(14)00165-9. doi: 10.3168/jds.2013-7543. [Epub ahead of print] Genomic selection for producer-recorded health event data in US dairy cattle. Gaddis KL1, Cole JB2, Clay JS3, Maltecca C4. Abstract Emphasizing increased profit through increased dairy cow production has revealed a negative relationship of production with fitness and health traits. Decreased cow health can affect herd profitability through increased rates of involuntary culling and decreased or lost milk sales. The development of genomic selection methodologies, with accompanying substantial gains in reliability for low-heritability traits, may dramatically improve the feasibility of genetic improvement of dairy cow health. Producer-recorded health information may provide a wealth of information for improvement of dairy cow health, thus improving profitability. The principal objective of this study was to use health data collected from on-farm computer systems in the United States to estimate variance components and heritability for health traits commonly experienced by dairy cows. A single-step analysis was conducted to estimate genomic variance components and heritabilities for health events, including cystic ovaries, displaced abomasum, ketosis, lameness, mastitis, metritis, and retained placenta. A blended H matrix was constructed for a threshold model with fixed effects of parity and year-season and random effects of herd-year and sire. The single-step genomic analysis produced heritability estimates that ranged from 0.02 (standard deviation = 0.005) for lameness to 0.36 (standard deviation = 0.08) for retained placenta. Significant genetic correlations were found between lameness and cystic ovaries, displaced abomasum and ketosis, displaced abomasum and metritis, and retained placenta and metritis. Sire reliabilities increased, on average, approximately 30% with the incorporation of genomic data. From the results of these analyses, it was concluded that genetic selection for health traits using producer-recorded data are feasible in the United States, and that the inclusion of genomic data substantially improves reliabilities for these traits. ESEMPIO N.2 J Dairy Sci. 2014 Mar 5. pii: S0022-0302(14)00155-6. doi: 10.3168/jds.2013-7328. [Epub ahead of print] Genetic parameter estimation for major milk fatty acids in Alpine and Saanen primiparous goats. Maroteau C1, Palhière I2, Larroque H2, Clément V3, Ferrand M4, Tosser-Klopp G5, Rupp R6. Abstract Genetic parameters for 18 fatty acids or groups of fatty acids (FA), milk production traits, and somatic cell score (SCS) were estimated by restricted maximum likelihood with a repeatability animal model, using 45,259 test-day records from the first lactations of 13,677 Alpine and Saanen goats. Fatty acid data were collected as part of an extensive recording scheme (PhénoFinLait), and sample testing was based on mid-infrared spectra estimates. The total predicted FA content in milk was approximately 3.5% in Alpine and Saanen goats. Goat milk fat showed similar saturated FA to cattle and sheep, but higher contents of capric (C10:0) FA (~9.7 g/100 g of milk fat). Heritability estimates ranged from 0.18 to 0.49 for FA and estimates were generally higher when FA were expressed in g/100 g of milk fat compared with g/100 g of milk. In general, the 3 specific short- and medium-chain goat FA, caproic acid (C6:0), caprylic acid (C8:0), and especially capric (C10:0) acid, had among the highest heritability estimates (from 0.21 to 0.37; average of 0.30). Heritability estimates for milk yield, fat and protein contents, and SCS were 0.22, 0.23, 0.39, 0.09, and 0.24, 0.20, 0.40, and 0.15, in Alpine and Saanen goats, respectively. When FA were expressed in g/100 g of milk, genetic correlations between fat content and all FA were high and positive. Genetic correlations between the fat content and FA groups expressed in g/100 g of fat led to further investigation of the association between fat content and FA profile within milk fat. Accordingly, in both Saanen and Alpine breeds, no significant genetic correlations were found between fat content and C16:0, whereas the correlations between fat content and specific goat FA (C6:0 to C10:0) were positive (0.17 to 0.59). In addition, the genetic correlation between fat content and C14:0 was negative (-0.17 to -0.35). The values of the genetic correlations between protein content and individual FA were similar, although genetic correlations between protein content and FA groups were close to zero. Genetic correlations of milk yield or SCS with the FA profile were weak. Results for genetic parameters for FA, however, should be further validated, because the low predicting ability of certain FA using mid-infrared spectra and the limited calibration data set might have resulted in low accuracy. In conclusion, our results indicated substantial genetic variation in goat milk FA that supported their amenability for genetic selection. In addition, selection on protein and fat contents is not expected to have an undesirable effect on the FA profile in regard to specificity of goat products and human health. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. KEYWORDS: dairy goat, fatty acid, genetic parameters, milk composition