The group The Nuclear Problem QMC EFT Developments Effective Field Theory and Quantum Monte Carlo Methods in Nuclear Physics Paolo Armani Università degli studi di Trento Facoltà di scienze MM. FF. NN. PhD WorkShop December 5th 2008 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments Research areas People Research areas Strong Correlated Fermion Systems Nuclear physics *vacancy effects i liqiud ³He *Gnd properties of Quantum Wires *spin orbit effects in 2D electon systems *vacancies effects in³He liquid * quantum dots properties Protein Folding QMC * equation of state of neutron and nuclear matter * Dominant Pathways of Protein Folding *nuclei binding energy and gnd state properties * neutron drops ( * electroweak cross sections ) ( *LIT transform ) * Interactive Istantos Liquid Model ( * StochasticPerturbation Theory ) ( * Effective Field Theoriy ) ( Chiral Perturbation Theory) QCD Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments Research areas People People Strong Correlated Fermion Systems Nuclear physics * F. Pederiva * P. Faccioli * S. Gandolfi * P. Armani ( * G. Orlandini ) ( * W. Leidemann ) * F. Pederiva * E. Lipparini * L. Dandrea * A. Ambrosetti QMC Protein Folding * P. Faccioli * F. Pederiva * G. Garberolio * M.Sega * E. Autieri * A. Lonardi * S. Beccara * P. Faccioli * R. Millo * M. Cristoforetti QCD Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments Existent Methods The Nuclear Problem Nuclear interaction based on: phenomenological potentials (Argonne, Urbana). potentials derived from Effective Field Theories (EFT). Effective Field Theories. Computational exact methods Methods using potentials: Shell–model (A ≤ 6 o A ≤ 12). Green Function Monte Carlo (GFMC) (A ≤ 12). Auxiliary Field Diffusion Monte Carlo (AFDMC) (A . 100). EFT methods: lattice simulations (A ≤ 4). Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments Existent Methods The Nuclear Problem Nuclear interaction based on: phenomenological potentials (Argonne, Urbana). potentials derived from Effective Field Theories (EFT). Effective Field Theories. Computational exact methods Methods using potentials: Shell–model (A ≤ 6 o A ≤ 12). Green Function Monte Carlo (GFMC) (A ≤ 12). Auxiliary Field Diffusion Monte Carlo (AFDMC) (A . 100). EFT methods: lattice simulations (A ≤ 4). Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments QMC Monte Carlo Methods Schrödinger equation in imaginary time X |Ψ(0)i = ci |φi i H|φi i = Ei |φi i i − d |Ψ(τ )i = (H − E0 )|Ψ(τ )i dτ |Ψ(τ )i = e −τ (H−E0 ) |Ψ(0)i −→ τ →∞ c0 |φ0 i Diffusion Monte Carlo Z hr |Ψ(τ + dτ )i = hr |e −dτ (H−E0 ) |r 0 ihr 0 |Ψ(τ )idr 0 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments QMC Monte Carlo Methods Schrödinger equation in imaginary time X |Ψ(0)i = ci |φi i H|φi i = Ei |φi i i − d |Ψ(τ )i = (H − E0 )|Ψ(τ )i dτ |Ψ(τ )i = e −τ (H−E0 ) |Ψ(0)i −→ τ →∞ c0 |φ0 i Diffusion Monte Carlo Z hr |Ψ(τ + dτ )i = hr |e −dτ (H−E0 ) |r 0 ihr 0 |Ψ(τ )idr 0 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments QMC Monte Carlo Methods Schrödinger equation in imaginary time X |Ψ(0)i = ci |φi i H|φi i = Ei |φi i i − d |Ψ(τ )i = (H − E0 )|Ψ(τ )i dτ |Ψ(τ )i = e −τ (H−E0 ) |Ψ(0)i −→ τ →∞ c0 |φ0 i Diffusion Monte Carlo Z hr |Ψ(τ + dτ )i = hr |e −dτ (H−E0 ) |r 0 ihr 0 |Ψ(τ )idr 0 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments QMC Monte Carlo Methods Schrödinger equation in imaginary time X |Ψ(0)i = ci |φi i H|φi i = Ei |φi i i − d |Ψ(τ )i = (H − E0 )|Ψ(τ )i dτ |Ψ(τ )i = e −τ (H−E0 ) |Ψ(0)i −→ τ →∞ c0 |φ0 i Diffusion Monte Carlo Z hr |Ψ(τ + dτ )i = hr |e −dτ (H−E0 ) |r 0 ihr 0 |Ψ(τ )idr 0 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments QMC Monte Carlo Methods Schrödinger equation in imaginary time X |Ψ(0)i = ci |φi i H|φi i = Ei |φi i i − d |Ψ(τ )i = (H − E0 )|Ψ(τ )i dτ |Ψ(τ )i = e −τ (H−E0 ) |Ψ(0)i −→ τ →∞ c0 |φ0 i Diffusion Monte Carlo Z hr |Ψ(τ + dτ )i = hr |e −dτ (H−E0 ) |r 0 ihr 0 |Ψ(τ )idr 0 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments QMC Monte Carlo Methods Schrödinger equation in imaginary time X |Ψ(0)i = ci |φi i H|φi i = Ei |φi i i − d |Ψ(τ )i = (H − E0 )|Ψ(τ )i dτ |Ψ(τ )i = e −τ (H−E0 ) |Ψ(0)i −→ τ →∞ c0 |φ0 i Diffusion Monte Carlo hr , s|Ψ(τ + dτ )i = Z X hr , s|e −dτ (H−E0 ) |r 0 , s 0 ihr 0 , s 0 |Ψ(τ )idr 0 s0 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments Effective Field Theory Effective Field Theory (EFT) π fields on lattice Nucleons Fundamental Theory (QCD) ⇒ EFT GFMC accurate method ⇒ determination of effective parameters AFDMC ⇒ many–body systems could be studied Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments 4 He State of Art Developments Binding Energy Nucleon Eigenenergy 0 -2.82589E+01 -5 -10 Energia di legame [MeV] -15 -20 -25 -30 -35 -40 -45 -50 0 50000 100000 150000 200000 250000 300000 Passi monte carlo 350000 400000 450000 500000 method tested on trial 4 He system some enhancement are necessary for an accurate fit of effective parameters Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments State of Art Developments Future Developments As a first step compute effective Hamiltonian parameters compute binding energy of few–body nucleon systems As next step determine equation of state of neutron and nuclear matter (astrophysical interest) improve EFT Hamiltonian to next orders Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments State of Art Developments Future Developments As a first step compute effective Hamiltonian parameters compute binding energy of few–body nucleon systems As next step determine equation of state of neutron and nuclear matter (astrophysical interest) improve EFT Hamiltonian to next orders Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth The group The Nuclear Problem QMC EFT Developments Effective Field Theory and Quantum Monte Carlo Methods in Nuclear Physics Paolo Armani Università degli studi di Trento Facoltà di scienze MM. FF. NN. PhD WorkShop December 5th 2008 Paolo Armani Effective Field Theory andQuantum Monte Carlo Meth