Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003, ed. S. Huerta, Madrid: I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados, 2003. From the «Architecture hydraulique» to the «Science des ingénieurs»: Hydrostatics and Hydrodynamics in the XIXth century Massimo Corradi L' ARCHITECTURE HYDRAULlQUE: THE FIRST STUDIES ON RUNNING WATER AND THE FOUNDATION OF HYDRAULlCS Hydraulics, notwithstanding its ancient ongms, is very young as a discipline. lt has been founding and consolidating its scientific bases on Iy for the last three centuries as pure science, like mechanics, and its application to engineering. The «discovery» of basic principIes, the fundamentals of hydraulic science, required many efforts throughout the 17th and \8th century. The first phase of deve10pment is the great season of experimental hydraulics during the Renaissance, especially in Italy, thanks to the contribution of Leonardo da Vinci (1452-1519), Girolamo Cardano (1501-1576), Giovan Battista Benedetti (1530-1590), Bernardino Baldi (1553-1617) and others. Only with the school of Galileo Galilei and his pupils, like Evangelista Torricelli (1608-1647) and Benedetto Castelli (1577- 1643), with his treatise Delta misura delte acque correnti COn measuring running water') published in 1628, the road to the great treatises on hydraulics of the 17th and 18th centuries was opened. In this field of studies the treatise of Carlo Fontana (1634-1714) «On measuring running water» (Fontana 1696) played a great importance role. In 1644 Torricel!i, an Italian scientist, published in Florence De motu Aquarum (Torricelli 1644). In this book, he set the !aw bearing his name: the first public announcement of his water efflux principIe. This law stated that the velocity of water efflux from an orifice in the bottom of a tank is proportional to the square of height from the surface of the water to the bottom of the tank. In other words, this velocity is equal to «liquids (velocity) which issue with violence have at the point of issue the same velocity which any heavy body, or any drop of the same liquid, it were to fal! from the upper surface ofthe liquid to the orifice from which it issues» (Rouse and Ince 1963, 62). It is commonly written as v = V2ih. This law wil! be thourougly explained, with the utmost accuracy, by Daniel Bernoul!i (1700-1782), in the first half of the 18th century, by means of differential and integral calculus. In the 17th century the studies on hydraulics were no longer limited to ltaly but they spread al! over Europe thanks to the work of Simon Stevin (1548-1620), Edmé Mariotte (1620-1684) -who is considered the father of the experimental methodMarin Mersenne (\588-1648), Blaise Pascal (1623-1662) -who was the most important scientist of the century in hydraulic scienceand also Isaac Newton (1642-1727) with his studies on fluid mechanics and, on a more experimentallevel, Pierre Varignon (1654-1722) on motion and the measurement of running water. Mariotte's treatise on running waters and fluid bodies (Mariotte 1686) -published two years after his deathled the research on fluid and liquid properties, on the equilibrium of heavy fluid bodies, 636 M. Corradi UTILlSSIMO , TRA TT:\ TO D f. L 1.' ACQUE CORREN TI D!V!~O 1:-: rRE LlliRL H ,\!. c.\ y .\ t t r 11. e A R L o F o N T A N A. r o ALLA SA<;RA. E ¡lEAL ~!AEST.\' DI GIUSEPPE IGNAZIO D A J)l! S T R 1 A R!'. R o ~I A X l. ~o. t;-..,,-,,\\j\. -Figure 1 Caria Fontana: Trattato dell'acque correnti (1696) even compressible, on the measurement of running water, on the trajectory of ]iquid particIes, on water' s distribution and finally on the resistance of water pipes under water pressure. Mariotte started fram Torricelli' s eff]ux principIe and he verified his theories in several experiments by means of ingenious mechanism. Concurrent]y, in Ita]y, Domenico Guglielmini (1655-] 710), and considered the founder of ]talian school of hydraulics, published very important treatises on hydrau]ics, the measurement of running water (Gug]ielmini ]690), and the motion of water ] 697). In this ]ast field, rivers (Gug]ie]mini Gug]ielmini takes again specu]ative ideas from Castelli and TorriceIli, and somehow he established the basics of fluvial hydrau]ics. Guglielmini was the first scientist who showed the existence of a uniform state of equilibrium between running water on incIined p]ane (which increases his velocity) and the riverbed' s active resistance. In the midd]e of 17th century Blaise Pasea] (1632-1662) was the most important scientist in hydraulic sciences, particu]arIy hydrostatics. His treatise on the equilibrium of liquids, pub]ished posthumous]y in 1663, extends Stevin's ana]ysis and experiments. The most notable theory in his book is the concept of constant hydrastatic pressure at the same water depth. In a fluid the hydrastatic pressure is the same in all directions which are starting fram the centre of water particIe. This important contribution of Pasea] bridges dynamics of rigid bodies and fIuid dynamics. Moreover, we remember Newton's fundamenta] contributions on bodies immersed in fIuids or liquidsa From the «Architecture hydraulique» 637 to the «Science des ingénieurs» .. M. A [!] r : A [tJ J L :;,.o'-:":'" G B F(; r~n.. .::::.J. ::;;::D Hh J~l :..)1\~ [jlJ Z C' 'J p ¡, A J4. :::::::~~:.:~::. ':::::::f""::::'. -<T Figure 2 From Mariotte's treatise (1686) and his studies on water jets, wave-motion, viscosity' s coefficients, About viscosity Newton established that tangential stresses in a viscous fluid are proportional to the relative velocity of fluid in adjacent parts. In an endJess cylinder rotating on its own axis with constant angular velocity, fluids velocity changes in inverse proprotion to the radial distance measured from the axis. Thus, Newton rejected Descartes' theory on vortex. In 1725 the treatise of Pierre Varignon on water motion and running water measurement was published posthumous. From this point of view, this treatise focused on the mechanistic aspects of the problem rather than to the fluids behaviour. Varignon analysed the Torricelli's problem: the discharge of a liquid from an orifice. But, as Newton, he obtained the same wrong result about the coefficient which is a velocity multiplier of liquid' s eft1ux. A few years later, in 1743, Johann Bernoulli (1667-1748) published a treatise entitled Nouvelle hydraulique. In this work Bernoulli indicated his point of view of Newton's theory about the shape of a stream of water discharged from a cataract. In this subject Bernoulli caJled attention to the error in Newton cataract theory, as this hypotheses required a zero pressure -which was physically impossiblethroughout the zone of contact between the cataract and the stagnant water around it. We have to remember though that for the whole of the 16th, and part of the 17th century as we]], hydraulics has been confined to the empirical sciences. It was only with the coming of differential and integral calculus, in the 17th century, that the principIes of the motion of fluids were established and hydraulics raised to the same level of the other mechanical sciences. 638 M. Corradi « . A.. ~ Figure 3 Velocity distribution around a rotating cylinder by Newton author gives a simple explanation of the probJems related to the static balance of fluids, efflux velocity, liquids oscilJation, energy saving principIe or energy loss, hydraulics machine, air motion, fluids motion etc. This compendium of Bernoulli studies showed Bernoulli concern with theoretical principIes and application of the progress in hydraulics, and particularly in hydrostatics and hydrodynamics aspects. Por example, we remember that Bernoulli was the first scientist to use the piezometer to calculate the water pipes pressure. This work is a cornerstones of modern hydraulics, in that it is the definition of the fundamental relationship between the speed of an element in a liquid mass and its relative loado In this important work Daniel Bernoulli defined the basis of modern hydraulics. What is significant is the demonstration of his theorem, based on the energetic principIes by Christiaan Huygens (1629-1695) and Gottfried Wilhelm Leibniz (1646-1716), which establishes that in a perfect liquid, in stationery motion, the sum of position, pressure and kinetic energy of each particle is constant during the whole trajectory, which confirms the principIe of energy conservation. I :l- I~ 1 L I A. H L .JC G- B !7lr. ;7. R. e E G F 1) Figure 4 Newton' s original concept of orifice discharge 2. THE BEGINNING m' THEORETlC HYDRODYNAMICS The beginning of theoretic hydrodynamics dates back to 1738, Daniel Bernoulli published the treatise on hydrodynamics (see: Hydrodynamica, 1738). The Figure 5 Water eftlux from an orifice by BernoulJi From 9i.1'.7.3 A the «Architecture hydraulique» ' J. i'~J , e Figure6 The first idea of the piezometer S + P-y where S is In formula: + by Daniel Bernoulli V2 consto (Bernoulli's 2g = Theorem), the height 01' generic water particle on his trajectory; p is the liquid pressure; y is the specific weight 01' liquid; Vis the water velocity; g is the acceleration due to gravity Bernoulli's work opened up the road to important developments in hydraulics by scientist like JeanBaptiste Le Rond d'Alembert (1717-1783), with his studies on hydrodynamics and tluid mechanics, Leonhard Euler (1707-1783), Pierre-Simon, Marquis de Laplace (1749-1827), Alexis-Claude Clairaut (1713-]765) and many others. During few years numerous treatise had been published and this scientific literature granted to this discipline the role 01' mechanics science instead 01' empirical arto For this reason we make a concise compendium 01' most significant researches. In ] 744 d' Alembert published his Traité de l' equilihre et du mouvement des fluides on hydrodynamics and fluid mechanics. In the opinion 01' this French scientist hydrodynamics (and then hydraulics) must be founded on experimental observations; converse]y, solid mechanics can be founded on the basis 01' metaphysical principies. The problem related to the fluid motion and t1uid resistance were complex; they can be misinterpreted by the Philosophes a notions incomplettes -as stated by Leibniz-, but also the scientists with a propensity to give a philosophical halo with metaphysical to the "Science des ingénieurs» 639 peculiarity to mechanics principies used in this particular field. The problem -certainly a comp]icated onedated back to the problem 01' conservation of live forces which Daniel Bemoulli assumed as principie although d' Alembert deduced it by his «principie». Three years later, in 1747, the Berlin Academy set a prize competition on this topic and the winner was d' Alembert with his essay Réflexions sur la cause générale des vents. This results was strongly criticised by Daniel Bernoulli: he named the winner a «good mathematician» but a «very poor physicist». In fact, the prize was assigned with merit: the d'Alembert's work doesn't solve thourougly the mathematical problem, but in this work was showed important results introducing aerodynamics studies. AIso in 1750 the Berlin Academy promoted another prize competition more related to the subject of hydrodynamics and the theory of t1uid resistance, but no memoirs was deserved the prize. In 1752 d' Alembert published in Paris his fundamental work Essai d'une nouvelle théorie de la résistance des fluides where he introduced his hydrodynamics «parado x» (or «d' Alembert's paradox»). This paradox stated that a body moving in a perfect t1uid or if it is possible to state a related motion between fluid and body, the resultant 01' the whole t1uid pressure acting on body is equal to zero. This result, in conflict with experience, depends on the hypotheses 01' a fluid without adhesion and viscosity and that the body is acting through an ideal homogeneous weightless fluido The next step was the publication 01' Euler's Principia (Principia motus jluidorum) in 1755; this work is the benchmark for al! scientists of tluid mechanics and hydrodynamics. In this fundamental book Euler defines his equation of continuity for a fluido This equation translates in mathematical form the physical principIe 01' mas s conservation, by using potential functions for an incompressible fluido By using this equation it is possible obtain the equation describing the motion 01' a fluid, even if -as Euler himself remarked«it still impossible to have a complete knowledge 01' t1uid motion not for inadequacy of principIes, but for lack 01' instruments in mathematical analysis » (Euler 1755). There is a great difficulty: it is the mathematical integration 01' differential equations to partial derivative which describes the motion of generic 640 M. Corradi fluid, as later remarked by Joseph-Louis Lagrange (1736-1813) in his Méchanique analytique (Lagrange 1788, 436]. Finally, it is important to remember Laplace' contribution. Pierre Simon Laplace (1749-1827) introduced his Laplacian operator -in his Mécanique céleste published in five vo1umes starting from 1799 to 1825to study problems related to hydrodynamics. His studies on wave-motion and tides, in addition to those on capillarity, are very important to develop hydrodynamics. Considering applicatory point of view, Franz Joseph von Gerstner (1756-1832) increased these studies. He also studied hydraulic machines, dams, water motion in channels and wavemotion [Gerstner, 1788]. To synthetize: the indefinite equations of equilibrium in a generic fluid are: kF = grad(p), where F is the vector force referred to the mass unit, k is the liquid density, p the specific pressure related to area unit. If the liquid is incompressible, then it is possible write motion, obtained that p = f(k). The equations from d' Alembert' century. In ltaly and France scientists of hydraulics opened up the road to the application of the Science de Ingénieurs. in France we remember the important contributions of Bernard Forest de Belidor (1697 -1761), Gaspard-Fran¡;ois-ClairMarie Le Riche de Prony (1755-1839), Antoine Chézy (1718-1798), Pierre-Simon Girard (1765-1836), Jean-Charles Borda (1733-1799), Pierre Louis Georges Du Buat (1734-1809), and others. In Italy we remember Giovanni Poleni (1683-1781), Francesco Maria De Regi (1720-1794) and Father Barnabite Paolo Frisi (1728-1784). Giovanni Poleni -may be best remembered well for his studies about the reinforcement oí' St. Peter' s Dome in Rome (Benvenuto 1991)studied so me problems related to water efflux from an orifice and then he stated the weir laws (Poleni 1717), De Regi focused on the measurement oí' running water (De Regi 1764), while the Barnabite Frisi devoted his life to study river hydraulics (Frisi, 1770; Frisi 1777). of fluid principie, are: ak . k F -ctt =grad(p),p =f(k), a/+ dlv(kv) = O.The ( dv ) last equation is named continuity equation, and it assumes the next form ~~ + k div(v) = O where vis the velocity of a single fluid particle P where the vector force is applied F, p and are respectively the pressure and density in the same point at the time t. To establish kinetic state oí' a fluid, or the velocity assumed by fluid particles when through a determinated fixed point in the fluid mass, it is . . . dv av dV pOSSI bl e to wnte t h at: v. Th en IS = a¡ + ( ) dt av dP dV (dP )v = F - grad(p). . Thls k equation shows the absolute form of Euler' equation (Marcolongo 1904). easy to have that at + 3. ApPLIED HYDRAULlCS The 18th and the 19th centuries were also the centuries of experimental hydraulics. Experimenters played a crucial role in the development of applied hydraulics. The aim of this essay is follow the same route that leaded from theoretical hydrostatics and hydrodynamics to applied hydraulics during the 19th Figure 7 Poleni: De Motu Aquae Mixto (1717) From the «Architecture hydraulique» }I>, <> Figure 8 Belictor: L 'Architecture Hydraulique (1737-39) As the Ita]ian Schoo] of experimenta] hydrau]ics we remember a great number of scientists and among them we mention Ottaviano Cametti (1711-] 789) (Cametti ] 777) and Nicco]o Carletti (II ha]f of 17th) (Carletti ] 780)< In this scientific context, it' s very important to remember the researches of Jacopo Riccati (1676-1754) on the prablem «to determine the force caused by tluid bodies crashing into solid bodies» (Riccati 1742) or, also, his studies «on the ]aws of tluid resistance to delay the motion of so]id bodies» (Riccati ] 722)< The Guglielmini' s works and ] 731) his «Epistola hydrostatica» (Guglie]mini written by Domenico Guglie]mini (1655-1710) in 173] ha ve to be remembered. And we also remind Anton-Maria Lorgna (1735-1796) and his researches on running waters (Lorgna ] 777), Antonio Rocchi (1724-1780) and his studies on measurement of bodies velocity and strength in motion and his application to hydrostatic prob]ems (Rocchi 1775), Gregorio Fontana (1735-1805) and his dissertation upon hydrodynamics, on the motion of a body in a to the «5Óence des ingénieurs» 641 resistant medium, on the waterproof of channels (Fontana 1802), on the water pressure in motion into vessels, tubes and pipes, on the effect of centrifuge force on tluid motion (Fontana] 803), and the mature studies carried out by Louis Lagrange at the early eighties of 18th century (Lagrange 1781; Lagrange ] 781-85). Finally, we have to mention the translation of Hydrodynamics treatise of abbé Charles Bossut (1730-]814) by Gregorio Fontana (Fontana 1785) in ]785. In France, after the important studies begun by Mariotte and le Chevalier Samuel Morland (1625-1695) (Mor]and 1685), we remember the scientific work of C]aude Antoine Couplet (1642-] 722) on the resistance of pipes subject to great pressure, and then the very editorial effort of Bernard Forest de Belidor (1693-] 761), who published an important encyclopaedic treatise on Architecture hydraulique (2 volumes in 4 tomes) where he thouroughly investigate on subjects related to hydraulic engineering and construction machinery (hydrauJic whee], watermill, windmin, suction pump, water pump, hydrauJic pump, vessels, tubes, pipes, and others topics as mari time construction as weirs, dams, channels, river ports, and others). The difficult field of mechanica] science was a challange for many other scientists who obtained a ]arge number of interesting resuJts. Henri de Pitot (1695-1771) invented an instrument to measure running water; Antoine Chézy (17] 8-] 798) expressed a mathematica] formula for the evaluation of water ve]ocity in a channel under constant running water. This formula is still in use in applied hydraulics< John Smeaton (1724-1792), a famous English engineer, was invo]ved in experimental hydraulics; Charles Borda (1733-1799) carried out severa] laboratory tests on tluid resistance and on liquids' eftlux fram one or more orifices in a vessel. Charles Bossut (1730-] 814) conducted extensive studies on hydrodynamics (Bossut ] 775) and on experimental hydraulics (Bossut 1795); Pierre Louis Georges Du Buat (1734-1809) studied various phenomena re]ated to tluid motion through pipes and channe]s and so he described veIocity of water eftlux fram an orifice, pipes resistance under constant pressure and then he deve]oped a semi-empirical method to evaluate channe]s' cross section in accordance with Chézy' theory< Finally, we mention the contributions of Giovanni Battista Venturi 642 M. Corradi '\~~ '. I n Figure9 Le Chevalier Morland. Elevation des eaux , . . (1685) (1746-1822) and Reinhard Woltman (1757-1837) with their studies on measurement of pipes resistance under pressure and their researches on water motion in tubes and channe1s (Rouse and luce 1954). 4. NEW TRENDS IN HYDRAULICS construction of machinery and instruments to convey water in rivers, channels, tubes, pipes, etc. It is a revival of app1ied hydrostatic and hydrodynamics, glorys 1'or Italy and France in the Renaissance. The 1'olJowing century will be the century 01' theoretical hydrodynamics or t1uid mechanics, but this is another story. By the end of the 18thcentury and the beginning of the 19th century, a 1arge number of studies and researches REFERENCE LIST on hydrau1ics (hydrostatics and hydrodynamics) was carried out. This trend was set with an imposing amount of treatise, books, critical essays on various topics related with hydraulics and its applications to engineering. The work of Pons-Joseph Bernard (1748-1816) on Principes d'Hydraulique (Bernard 1787), the treatises of Gaspard-Clair-Fran¡;ois-Marie Le Riche, Baron de Prony (1755-1839) on L'ecoulement des jluides incompressibiles [Prony, 1790-96]. on the Jaugeage des eaux courantes [Prony, 1802], or on the Théorie des Eaux Courantes (Prony 1804), the essay of Pierre-Simon Girard (1765-1836) on the Mouvement des eaux courantes (Girard 1804), or the critica1 review of Du Buat's treatise by Fran¡;ois-Michel Lecreulx (1729-1812) (Lecreulx 1809) are an anticipation of the publishing revolution which enhanced the diffusion 01' the new trend in hydrau1ics scientific community. The Prony's Nouvelle Architecture Hydraulique (Prony 1790-96) so as the Belidor' s Architecture hydraulique (Belidor 1737-53) were the basis of applied hydraulics in engineering (Belidor 1729). They had a great diffusion in scientific community and in practical engineering as well. They turned theories from Bernoulli, Bossut, d' Alembert, Euler, Lagrange into AA. VV. 1765-1774 (2"0 ed.). Raccolla d'autori che trallano del moto dell'acque. 9 vols. Firenze: nella Stamperia di Sua Altezza Reale, Gaetano Cambiagi Stampator Granduca]e. Alembert, Jean-Baptiste Le Rond d'. 1743 (2"" ed. 1758). Traité de Dynamique . . . . Nouvelle Edition, revue &fort augmentée par l'Auteur. Paris: David. Alembert, Jean-Baptiste Le Rond d'. 1744. Traité de l'équilibre et du mouvement des fluides. Pour Servir de Suite au Traité de Dynamique. Paris: David. Alembert, Jean-Baptiste Le Rond d'. 1752. Essai d'une Nouvelle Théorie de la Résistance des fluides. Paris: David. Alembert, Jean-Baptiste Le Rond d'. 1770. Traité de l'équilibre et du mouvement desfluides. Paris: Briasson. Alembert, Jean-Baptiste Le Rond d'; Condorcet, JeanAntoine-Nicolas Caritat de; Bossut, Charles. 1777. Nouvelles expériences sur la résislallce des fluides. Paris. Algarotti, Francesco. l1737] 1739. Il Newtonianismo per le dame, ovvero Dialoghi sopra la luce, del Cte Francesco AIgarolli. Napoli: G. B. Pasquali. Aubuisson de Voisins, Jean fran<,:oise d'. 1824-1829. Mémoires sur le mouvement de l'air dan.I'les tuyaux de conduite . . . Paris: Huzard. Belidor, Bernard Forest de. 1729. La science des ingénieurs dans la conduit des travaux des fÓrtifications et d'architecture civile. Paris: C. Jombert. From the «Architecture hydraulique" Belidor, Bernard Forest de. 1737-] 753. Architecture hydraulique. 4 vols. Paris: Charles-Antoine Jombert. Benvenuto, Edoardo. 199]. An lntroduction to the History of Structural Mechanics. New York: Springer. Benvenuto, Edoardo: Corradi, Massimo. ]988. «Breve storia del vuoto». Nuova secondaria. n. 6, 34-41. Brescia. Bernard, Pons-Joseph. 1787. Nouveaux Principes hvdrau/ique.l' appliqués a tous les objets d'utilité, et particulierement aux rivieres, précédés d'un cours historique et critique sur les principaux ouvrages qui ont été pub/iés sur le meme sujeto Paris: impr. de Didot a'iné. Bernoulli, Daniel. 1738. Hydrodynamica, sive de viribus et motibus jluidorum commentarii. Argentorati: Johannis Reinho]di Du]seckeri. Bernou]li, J ohannis. 1742. Hydrau/ica, Nunc primum detecta ac demonstrata directe ex fundamentis pure mechanicis, Anno 1732. [n Johannis Bernoulli, Opera Omnia, T. IV, pp. 387-493. Lausanne & Genevae. B]ay, Michel. ]992. La naissance de la mécanique analytique. La science du mouvement au tournant des XVIle et XVIJIe siixles. Paris: puf. Bossut, Charles. ]775. Traité élémentaire d'hidrodynamique ouvrage dans lequella théorie et /'experience s 'éclairent ou se suppléent mutuellement; avec des notes sur plusieurs endroits qui ont paru mériter detre approfondis. Paris: C]aude-Antoine Jombert. Bossut, Charles. ] 796. Traité théorique et expérimental d'hydraulique. 3'" ed. Paris: Laran. Cametti, Ottaviano. ] 777. Mechanica jluidorum. F]orentia. Carletti, NiccoIo. 1780. lnstituzioni di architellura idraulica dedolle dal/e scienz.e di ragione, e di natura, ecc. Napoli. Castelli, Benedetto. ] 639. Del/a misura del/' acque correnti di Don Benedello Castel/i Monaco Cassinese. Roma: nella Stamperia di Francesco Cavalli. Castelli, Carlo. ] 787.ldrodinamica ossia scienza del/'acque teorico-pratica esposta in un corso elementare. Mi]ano: Giuseppe Ga]eazzi. Chézy, Amoine de. 1775. Mémoire sur la vitesse de l'eau conduite dans une rigole donnée. 1775. C]airaut, A]exis-Claude. 1743. Théorie de la figure de la terre tirée des principes de I'hydrodynamique. Paris: David [i]s. Darcy, Henri-Philibert-Gaspard. 1857. Recherches eXpérimentales relatives ai mouvemel1l de /'eau dans les tuyaux. Paris: Mallet-Bachelier, 1857. De Marchi, Giu]io. 1929. Idraulica. Mi]ano: Hoepli. De Regi, Francesco Maria. 1764. Uso del/a tavola Parabolica nel/a misura del/e acque corrC/ai destinate al/'innaffiamel1lo del/e terre : esposto dal p.d. Francesco Maria de Regi . . . per regolamento del/'acque nel ducato di Mantova d'ordine di sua eccel/enza Car/o conte e signore di Firmian. Milano: nella Regia ducale corte per Giuseppe Richino Malatesta stampatore regio camerale. 643 to the "Science des ingénieurs» Du Buat, Pierre Louis Georges. 1786 Principes d'hydraulique, vérifiés par un grand nombre d'expériencesfaites par ordre du gouvernement. 2'" ed. Paris: Impr. de Monsieur. Dugas, René. ] 955. Histoire de la Mécanique, Neucháte]: Ed. du GritIon. Dugas, René. ]988. A History of Mechanics. New York: Dover. Duhem, Pierre. []903] ]992. L'évolution de la Mécanique. Paris. Eu]er, Leonhard. 1736. Mechanica sive Motus Scientia analytice exposita. Fontana, Carlo. ] 696. diviso in tre libri, Elperienze di Esse. T. 1 & n, Petropoli. Utilissimo trallato del/'Acque Correnti nel quale Si notificano le Misure, ed 1 Giuochi, e Scherzi, li quali per meZZ.o del/' Aria, e del fuoco, vengono operati dal/'Acqua, Con diversi necessarii ammaestramenti intomo al modo di far Condolli, Fistole, BOllini, ed altro, per condurre I 'Acque ne luoghi destinati. Con una esalla notizia di tullo quel/o ch' e stato opera/o in tomo al/a condullura del/' acqua di Bracciano. . . dal cavalier Car/o Fontana. . . Roma: Gio. Francesco Buagni. Fontana, Gregorio. ] 785. Trallato elonentare d'idrodinanÚca del Sigo Abate 80ssut tradotto dalfrancese: aggiuntevi le lezioni d'idrodinamica del P. Gregorio Fontana. Pavia: Stamperia de] R.l. monisterio di S. Salvatore. Frisi, Paolo. 1762. Del modo di regolare i jiumi e i torrenti principalmente del holognese e del/a Romagna libri tre del p. d. Paolo Frisi. Lucca: per Vincenzo Giuntini, a spese di Giovanni Riccomini. Frisi, PaoIo. 1768. Del modo di regolare i jiumi, e i torrenti . . . libri tre. Seconda edizione accresciuta. Lucca. Frisi, Paolo. 1770. Dei ./iumi e torrenti libri tre. Edizione terza aggiuntovi il trallato dei cana/i navigabili. Firenze. Frisi, PaoIo. ] 777. lnstituzioni di meccanica, d'idrostatica, d'idrometria e del/' architellura statica, e idraulica ad uso del/a regia scuola erella in Milano per gli architelli, e per g/'ingegneri del P. Frisi. Mi]ano: Appresso G. Galeazzi. Frisi, Paolo. 1783. Operwn tomus secundus, mechanicam universam et mechanicae applicationem ad aquarum jlaentium theoriam continens. Mediolani. Gerstner. Franz J oseph, Ritter von. 1804. «Theorie der Wellen». Ahhandlungen der kaniglichen hohmischen Gesel/shqfi der Wissenschaften. Prague. Gilmotti, Giovanni Maria. 1713. Ahhachino di Gio: Maria Gilmolli Padovano con I'instruzioni, e Conti necessarij a//i Principianti di tal scienza, con la Spiegazione del/a Regola del/a proporziona/itá per sciogliere qualunque quesito () diriftO, Ó everso che sia, con diversi quesiti, e Regole sopra il he//ico esercizio del/a Bomba, e seoli d'Acqua non piu messe in luce da altro Autore. Ferrara. Girard, Pierre Simon. 1804. Essai sur le /l/ouvement des eaux courantes, et lajigure qu'il convient de donneraux canaux qui le contiennent. Paris: Impr. de la République. 644 M. Corradi Grandi, Guido. 1750. lnstituzioni meccaniche. Traltato. Venezia: Gio. Battista Recurti, 1750. Guglielmini, Domenico. [1697] 1739. DeUa natura deijiumi traltato fisico-matematico eco In cui si mal1lfestano le principali proprieta de' fiumi . . . Bologna: per gli Eredi d' Antonio Pisarri. Guglielmini, Domenico. 1690. Aquarum .fluentium mensura nova methodo inquisita. Bononiae: typ. Pisariana. Guglielmini, Domenico. 1691. Aquarum.fluentiwn mensura nova methodo inquisita. Pars altera Bononiae: typ. Pisariana. Hermann, Jacob. 1716. Phoronomia, sive de virihus et motihus corporum so/idorum et fluidorum. Amsterdam: Rod. & Gerh. Wetstenios. Lagrange, Joseph-Louis. 1770-1773. "Sur la percussion des t1uides». MisceUanea taurinensia. t. V, ano AIso in Memorie dell 'Accademia di Torino, t. 1, par. 1, 1781-85. Lagrange, Joseph-Louis. 1781. "Sur la théorie des Mouvements des Fluides». Nouvelles Mémoires de l'Académie Royale de Serlin, An. /781. Lagrange, Joseph-Louis. 1788. Méchanique analytique. Paris. Lecreulx, (s.n.). 1809. Examen critique de l'ouvrage de M. Duhuat sur les principes de 1Bydraulique. Paris: F. Didot. Lorgna, Anton-Maria. 1777. Memoria intorno aU'acque correnti. Verona: nella Stamperia Moroni. Mach, Ernst. 1968. La Meccanica nel suo sviluppo sto ricocritico, (trad. it.). Torino: Boringhieri. Marcolongo, Roberto. 1904. Meccanica razionale. Milano: Hoepli. Mariotte, Edme. 1686. haité du Mouvemellt des Eaux et des aLtlres corps fluides. Divisé en V. Parties. Par le feu M. Mariolte . . . . Mis en lumiere par les soim de M. de la Hire, . . . Paris: Estienne Michallet. Mariotte, Edme. 17] 8. A Treatise oj' the Motion oj' Water, and other Fluids: With the Origin oj' Fountains or Springs, and the Cause o( Winds. In which Treatise, the Manner of Levelling or Conducting Rivers, in order to make them Navigahle; the making o( Aqueducts . . . cont. London: J. Senex and W. Taylor. Mazzucchel1i, Girolamo. 1784. Instituzione idrostatica. Roma. Mazzucchelli, Girolamo. 1796. Instituzione idrodinamica. Pavia. Morland, Le Chevalier. 1685. Elevation des eaux par toute sorte de machines reduite a la mesure, au poids, a la ha lance. Paris: impr. de G. Martin. Newton, Isaac. 1671 (published in 1736). Methodus .f1uxionwn et serierum infinitarum. Newton, Isaac. 196]-1981. The Mathematical Papers of Isaac Newton, edited by D.T. Whiteside et al. 8 voll. Cambridge: Cambridge University Press. Picon, Antoine. 1992. L'invention de l'ingénieur moderne. Paris: Presses des Ponts et chaussées. Pitot, Henry. 1735. «Description d'une Machine pour mesurer la vitesse des Eaux courantes et le sillage des Vaisseaux». Histoires de l'Académie Royale des Sciences, Année 1732, 363-376. Paris. Poleni, Giovanni. 1717. De Motu Aquae Mixto Lihri Duo. Quihus multa nova pertinentia ad Aestuaria, ad Portus, atque ad Flumina colltinentur. Patavii: losephi Comini. Prony, Gaspard-Fran~ois-Clair-Marie Le Riche de. (1790). Solution du prohleme de l' ecoulement des fluides incompressihiles et pesans par des orifices horisontaux, dans l'hypothese du parallelisme des tranches. Prony, Gaspard-Fran~ois-Clair-Marie Le Riche de. 1790-96. Nouvelle Architecture Hydraulique, contenant l'art d'élever l'eau au moyen de différentes machines, de construire dans ce fluide, de le diriger, et généralement de I'appliquer, de diverses manieres, aux hesoins de la société. Paris: Firmin-Didot. Prony, Gaspard-Fran~ois-Clair-Marie Le Riche de. 1802. Mémoire sur le jaugeage des eaux courantes. Paris: lmprimerie de ]a République. Prony, Gaspard-Fran\;ois-Clair-Marie Le Riehe de. 1804. Recherches physico-mathématiques sur la théorie des Eaux Courantes. Paris: Imprimerie Impériale. Rieeati, Jacopo. 1761. Saggio intorno il Sistema dell'Universo. Lucca. Rouse, Hunter; Inee, Simon. 1954. History o( Hydraulics. Iowa City: lowa lnstitute of Hydraulic Research. Szabó, lstván. 1977. Geschichte der mechanischen Prinzipien. Base]: Birkháuser. Todhunter, lsaae; Pearson, Karl. ] 886-93. A History o( the Theory of Elasticity al1d o( the Strel1gth of Materials jrom Galilei 10 Lord Kelvin. Cambridge. Torrieel1i, Evangelista. 1644. Opera geoll1etrica. Libro ll: De motu. Florentiae. Truesdell, Clifford A.. 1954. Rational Fluid Mechanics. Introductiol1 to Leonhardi Euleri Opera Omnia. Ser. 2, vo!. XII. Turiei: Orell Füssli. Truesdell, Clifford A.. 1968. Essays in the History o/, Mechanics. New York: Springer. Varignon, Pierre. 1690. Nouvelles cOl1jectures sur la pesanteur. Paris: chez J. Boudot. Varignon, Pierre. 1725. Traité du mouvement et de la mesure des eQ¡/X coulantes et jaillissantes. Tiré des Ouvrages Manuscrits de seu MOl1sieur Varignon, par M. 1'Ahhé Pujo!. Paris: ehez Pissot. Venturoli, Giuseppe. 1806. Elementi di Meccanica e d'ldraulica. Mi]ano. Voltaire (Fran~ois-Marie Arouet le Jeune). 1738. Eléments de la philosophie de Newton. Paris. Weidleri, lo. Frideriei. 1733. Tractatus de Machinis Hydraulicis . . . Vitembergae.