Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003,
ed. S. Huerta, Madrid: I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados, 2003.
From the «Architecture hydraulique»
to the «Science des ingénieurs»: Hydrostatics
and Hydrodynamics in the XIXth century
Massimo Corradi
L' ARCHITECTURE HYDRAULlQUE: THE FIRST
STUDIES ON RUNNING WATER AND THE FOUNDATION
OF HYDRAULlCS
Hydraulics, notwithstanding
its ancient ongms, is
very young as a discipline. lt has been founding and
consolidating its scientific bases on Iy for the last three
centuries as pure science, like mechanics, and its
application to engineering. The «discovery» of basic
principIes, the fundamentals
of hydraulic science,
required many efforts throughout the 17th and \8th
century.
The first phase of deve10pment is the great season
of experimental hydraulics during the Renaissance,
especially
in Italy, thanks to the contribution
of Leonardo
da Vinci (1452-1519),
Girolamo
Cardano (1501-1576),
Giovan Battista Benedetti
(1530-1590),
Bernardino
Baldi (1553-1617)
and
others. Only with the school of Galileo Galilei and his
pupils, like Evangelista Torricelli (1608-1647) and
Benedetto Castelli (1577- 1643), with his treatise
Delta misura delte acque correnti COn measuring
running water') published in 1628, the road to the
great treatises on hydraulics of the 17th and 18th
centuries
was opened. In this field of studies
the treatise of Carlo Fontana (1634-1714)
«On
measuring running water» (Fontana 1696) played a
great importance role.
In 1644 Torricel!i, an Italian scientist, published in
Florence De motu Aquarum (Torricelli 1644). In this
book, he set the !aw bearing his name: the first public
announcement of his water efflux principIe. This law
stated that the velocity of water efflux from an orifice
in the bottom of a tank is proportional to the square of
height from the surface of the water to the bottom of
the tank. In other words, this velocity is equal to
«liquids (velocity) which issue with violence have at
the point of issue the same velocity which any heavy
body, or any drop of the same liquid, it were to fal!
from the upper surface ofthe liquid to the orifice from
which it issues» (Rouse and Ince 1963, 62). It is
commonly written as v = V2ih. This law wil! be
thourougly explained, with the utmost accuracy, by
Daniel Bernoul!i (1700-1782), in the first half of the
18th century, by means of differential and integral
calculus.
In the 17th century the studies on hydraulics were
no longer limited to ltaly but they spread al! over
Europe thanks to the work of Simon Stevin
(1548-1620), Edmé Mariotte (1620-1684) -who is
considered the father of the experimental methodMarin
Mersenne
(\588-1648),
Blaise
Pascal
(1623-1662) -who was the most important scientist
of the century in hydraulic scienceand also Isaac
Newton (1642-1727)
with his studies on fluid
mechanics and, on a more experimentallevel,
Pierre
Varignon
(1654-1722)
on motion
and the
measurement of running water.
Mariotte's treatise on running waters and fluid
bodies (Mariotte 1686) -published
two years after
his deathled the research on fluid and liquid
properties, on the equilibrium of heavy fluid bodies,
636
M. Corradi
UTILlSSIMO
,
TRA TT:\ TO
D f. L 1.'
ACQUE CORREN TI
D!V!~O 1:-: rRE LlliRL
H ,\!.
c.\
y
.\ t t r 11.
e A R L o F o N T A N A.
r o
ALLA SA<;RA. E ¡lEAL ~!AEST.\'
DI GIUSEPPE IGNAZIO
D
A J)l! S T R 1 A
R!'.
R o ~I A X l. ~o.
t;-..,,-,,\\j\.
-Figure 1
Caria Fontana: Trattato dell'acque correnti (1696)
even compressible, on the measurement of running
water, on the trajectory of ]iquid particIes, on water' s
distribution and finally on the resistance of water
pipes under water pressure. Mariotte started fram
Torricelli' s eff]ux principIe and he verified his
theories
in several experiments
by means of
ingenious mechanism.
Concurrent]y,
in Ita]y, Domenico Guglielmini
(1655-] 710), and considered the founder of ]talian
school of hydraulics,
published
very important
treatises on hydrau]ics, the measurement of running
water (Gug]ielmini ]690), and the motion of water
] 697). In this ]ast field,
rivers (Gug]ie]mini
Gug]ielmini
takes again specu]ative
ideas from
Castelli and TorriceIli, and somehow he established
the basics of fluvial hydrau]ics. Guglielmini was the
first scientist who showed the existence of a uniform
state of equilibrium
between running water on
incIined p]ane (which increases his velocity) and the
riverbed' s active resistance.
In the midd]e of 17th century Blaise Pasea]
(1632-1662)
was the most important scientist in
hydraulic sciences, particu]arIy
hydrostatics.
His
treatise on the equilibrium
of liquids, pub]ished
posthumous]y in 1663, extends Stevin's ana]ysis and
experiments. The most notable theory in his book is
the concept of constant hydrastatic pressure at the
same water depth. In a fluid the hydrastatic pressure
is the same in all directions which are starting fram
the centre of water particIe.
This important
contribution of Pasea] bridges dynamics of rigid
bodies and fIuid dynamics.
Moreover, we remember Newton's fundamenta]
contributions on bodies immersed in fIuids or liquidsa
From the «Architecture
hydraulique»
637
to the «Science des ingénieurs»
..
M.
A
[!]
r
:
A
[tJ
J
L
:;,.o'-:":'"
G
B
F(; r~n..
.::::.J. ::;;::D
Hh
J~l :..)1\~
[jlJ
Z
C'
'J
p
¡,
A
J4.
:::::::~~:.:~::.
':::::::f""::::'.
-<T
Figure 2
From Mariotte's treatise (1686)
and his studies
on water jets, wave-motion,
viscosity' s coefficients,
About viscosity Newton
established that tangential stresses in a viscous fluid
are proportional to the relative velocity of fluid in
adjacent parts. In an endJess cylinder rotating on its
own axis with constant angular velocity, fluids
velocity changes in inverse proprotion to the radial
distance measured from the axis. Thus, Newton
rejected Descartes' theory on vortex.
In 1725 the treatise of Pierre Varignon on water
motion
and running
water measurement
was
published posthumous. From this point of view, this
treatise focused on the mechanistic aspects of the
problem rather than to the fluids behaviour. Varignon
analysed the Torricelli's problem: the discharge of a
liquid from an orifice. But, as Newton, he obtained
the same wrong result about the coefficient which is
a velocity multiplier of liquid' s eft1ux.
A few years later, in 1743, Johann Bernoulli
(1667-1748) published a treatise entitled Nouvelle
hydraulique. In this work Bernoulli indicated his
point of view of Newton's theory about the shape of
a stream of water discharged from a cataract. In this
subject Bernoulli caJled attention to the error in
Newton cataract theory, as this hypotheses required a
zero pressure -which
was physically impossiblethroughout the zone of contact between the cataract
and the stagnant water around it.
We have to remember though that for the whole of
the 16th, and part of the 17th century as we]],
hydraulics
has been confined to the empirical
sciences. It was only with the coming of differential
and integral calculus, in the 17th century, that the
principIes of the motion of fluids were established
and hydraulics raised to the same level of the other
mechanical sciences.
638
M. Corradi
«
.
A..
~
Figure 3
Velocity distribution around a rotating cylinder by Newton
author gives a simple explanation of the probJems
related to the static balance of fluids, efflux velocity,
liquids oscilJation, energy saving principIe or energy
loss, hydraulics machine, air motion, fluids motion
etc. This compendium of Bernoulli studies showed
Bernoulli concern with theoretical principIes and
application
of the progress in hydraulics,
and
particularly
in hydrostatics
and hydrodynamics
aspects. Por example, we remember that Bernoulli
was the first scientist to use the piezometer
to
calculate the water pipes pressure. This work is a
cornerstones of modern hydraulics, in that it is the
definition of the fundamental relationship between
the speed of an element in a liquid mass and its
relative loado In this important work Daniel Bernoulli
defined the basis of modern hydraulics.
What is significant is the demonstration
of his
theorem, based on the energetic
principIes
by
Christiaan
Huygens (1629-1695)
and Gottfried
Wilhelm Leibniz (1646-1716), which establishes that
in a perfect liquid, in stationery motion, the sum of
position, pressure and kinetic energy of each particle
is constant during the whole trajectory,
which
confirms the principIe of energy conservation.
I
:l-
I~
1
L
I
A.
H
L
.JC
G-
B
!7lr. ;7.
R.
e
E G F
1)
Figure 4
Newton' s original concept of orifice discharge
2. THE BEGINNING m' THEORETlC HYDRODYNAMICS
The beginning of theoretic hydrodynamics dates back
to 1738, Daniel Bernoulli published the treatise on
hydrodynamics
(see: Hydrodynamica,
1738). The
Figure 5
Water eftlux from an orifice by BernoulJi
From
9i.1'.7.3
A
the «Architecture
hydraulique»
'
J.
i'~J ,
e
Figure6
The first idea of the piezometer
S + P-y
where S is
In formula:
+
by Daniel Bernoulli
V2
consto (Bernoulli's
2g =
Theorem),
the height 01' generic water
particle on his trajectory; p is the liquid pressure; y is
the specific weight 01' liquid; Vis the water velocity;
g is the acceleration due to gravity
Bernoulli's work opened up the road to important
developments
in hydraulics by scientist like JeanBaptiste Le Rond d'Alembert (1717-1783), with his
studies on hydrodynamics
and tluid mechanics,
Leonhard Euler (1707-1783), Pierre-Simon, Marquis
de Laplace (1749-1827),
Alexis-Claude
Clairaut
(1713-]765) and many others.
During few years numerous treatise had been
published and this scientific literature granted to this
discipline the role 01' mechanics science instead 01'
empirical arto For this reason we make a concise
compendium 01' most significant researches.
In ] 744 d' Alembert
published
his Traité de
l' equilihre
et du mouvement
des fluides
on
hydrodynamics and fluid mechanics. In the opinion 01'
this French scientist
hydrodynamics
(and then
hydraulics)
must be founded
on experimental
observations;
converse]y, solid mechanics can be
founded on the basis 01' metaphysical principies. The
problem related to the fluid motion and t1uid
resistance were complex; they can be misinterpreted
by the Philosophes a notions incomplettes -as stated
by Leibniz-,
but also the scientists with a propensity
to give a philosophical
halo with metaphysical
to the "Science
des ingénieurs»
639
peculiarity to mechanics principies used in this
particular
field.
The problem
-certainly
a
comp]icated onedated back to the problem 01'
conservation of live forces which Daniel Bemoulli
assumed as principie although d' Alembert deduced it
by his «principie».
Three years later, in 1747, the Berlin Academy set
a prize competition on this topic and the winner was
d' Alembert with his essay Réflexions sur la cause
générale
des vents. This results was strongly
criticised by Daniel Bernoulli: he named the winner a
«good mathematician» but a «very poor physicist». In
fact, the prize was assigned
with merit: the
d'Alembert's
work doesn't solve thourougly
the
mathematical problem, but in this work was showed
important results introducing aerodynamics studies.
AIso in 1750 the Berlin Academy promoted another
prize competition more related to the subject of
hydrodynamics and the theory of t1uid resistance, but
no memoirs was deserved the prize.
In 1752 d' Alembert
published
in Paris his
fundamental work Essai d'une nouvelle théorie de
la résistance des fluides where he introduced his
hydrodynamics
«parado x» (or «d' Alembert's
paradox»). This paradox stated that a body moving in
a perfect t1uid or if it is possible to state a related
motion between fluid and body, the resultant 01' the
whole t1uid pressure acting on body is equal to zero.
This result, in conflict with experience, depends on
the hypotheses 01' a fluid without adhesion and
viscosity and that the body is acting through an ideal
homogeneous weightless fluido
The next step was the publication 01' Euler's
Principia (Principia motus jluidorum) in 1755; this
work is the benchmark for al! scientists of tluid
mechanics and hydrodynamics.
In this fundamental
book Euler defines his equation of continuity for a
fluido This equation translates in mathematical form
the physical principIe 01' mas s conservation, by using
potential functions for an incompressible fluido By
using this equation it is possible obtain the equation
describing the motion 01' a fluid, even if -as Euler
himself remarked«it still impossible to have a
complete
knowledge
01' t1uid motion not for
inadequacy of principIes, but for lack 01' instruments
in mathematical analysis » (Euler 1755).
There is a great difficulty: it is the mathematical
integration
01' differential
equations
to partial
derivative which describes the motion of generic
640
M. Corradi
fluid, as later remarked by Joseph-Louis Lagrange
(1736-1813)
in his Méchanique
analytique
(Lagrange 1788, 436]. Finally, it is important to
remember
Laplace'
contribution.
Pierre Simon
Laplace
(1749-1827)
introduced
his Laplacian
operator -in his Mécanique céleste published in five
vo1umes starting from 1799 to 1825to study
problems related to hydrodynamics.
His studies on
wave-motion
and tides, in addition to those on
capillarity,
are very
important
to develop
hydrodynamics.
Considering
applicatory point of
view, Franz Joseph von Gerstner
(1756-1832)
increased these studies. He also studied hydraulic
machines, dams, water motion in channels and wavemotion [Gerstner, 1788].
To synthetize:
the indefinite
equations
of
equilibrium in a generic fluid are: kF = grad(p),
where F is the vector force referred to the mass unit,
k is the liquid density, p the specific pressure related
to area unit. If the liquid is incompressible, then it is
possible
write
motion,
obtained
that p
= f(k).
The
equations
from d' Alembert'
century. In ltaly and France scientists of hydraulics
opened up the road to the application of the Science
de Ingénieurs. in France we remember the important
contributions
of Bernard
Forest
de Belidor
(1697 -1761),
Gaspard-Fran¡;ois-ClairMarie
Le
Riche de Prony (1755-1839),
Antoine
Chézy
(1718-1798),
Pierre-Simon
Girard (1765-1836),
Jean-Charles
Borda (1733-1799),
Pierre Louis
Georges Du Buat (1734-1809), and others.
In Italy
we remember
Giovanni
Poleni
(1683-1781), Francesco Maria De Regi (1720-1794)
and Father Barnabite
Paolo Frisi (1728-1784).
Giovanni Poleni -may be best remembered well for
his studies about the reinforcement
oí' St. Peter' s
Dome in Rome (Benvenuto 1991)studied so me
problems related to water efflux from an orifice and
then he stated the weir laws (Poleni 1717), De Regi
focused on the measurement oí' running water (De
Regi 1764), while the Barnabite Frisi devoted his life
to study river hydraulics (Frisi, 1770; Frisi 1777).
of fluid
principie,
are:
ak .
k F
-ctt =grad(p),p =f(k), a/+ dlv(kv) = O.The
(
dv
)
last equation is named continuity equation, and it
assumes
the next form
~~
+ k div(v)
= O where
vis the
velocity of a single fluid particle P where the vector
force is applied F, p and are respectively the pressure
and density in the same point at the time t.
To establish kinetic state oí' a fluid, or the velocity
assumed
by fluid particles
when through
a
determinated fixed point in the fluid mass, it is
.
.
.
dv av
dV
pOSSI bl e to wnte t h at:
v. Th en IS
= a¡ +
( )
dt
av
dP
dV
(dP )v = F -
grad(p).
. Thls
k
equation shows the absolute form of Euler' equation
(Marcolongo 1904).
easy to have that
at
+
3. ApPLIED HYDRAULlCS
The 18th and the 19th centuries were also the
centuries of experimental hydraulics. Experimenters
played a crucial role in the development of applied
hydraulics. The aim of this essay is follow the same
route that leaded from theoretical hydrostatics and
hydrodynamics to applied hydraulics during the 19th
Figure 7
Poleni: De Motu Aquae Mixto (1717)
From
the «Architecture
hydraulique»
}I>,
<>
Figure 8
Belictor: L 'Architecture Hydraulique (1737-39)
As the Ita]ian Schoo] of experimenta] hydrau]ics
we remember a great number of scientists and among
them we mention Ottaviano Cametti (1711-] 789)
(Cametti ] 777) and Nicco]o Carletti (II ha]f of 17th)
(Carletti ] 780)< In this scientific context, it' s very
important to remember the researches of Jacopo
Riccati (1676-1754) on the prablem «to determine
the force caused by tluid bodies crashing into solid
bodies» (Riccati 1742) or, also, his studies «on the
]aws of tluid resistance to delay the motion of so]id
bodies» (Riccati ] 722)< The Guglielmini' s works and
] 731)
his «Epistola
hydrostatica»
(Guglie]mini
written by Domenico Guglie]mini (1655-1710)
in
173] ha ve to be remembered. And we also remind
Anton-Maria Lorgna (1735-1796) and his researches
on running waters (Lorgna ] 777), Antonio Rocchi
(1724-1780)
and his studies on measurement
of
bodies velocity and strength in motion and his
application to hydrostatic prob]ems (Rocchi 1775),
Gregorio Fontana (1735-1805) and his dissertation
upon hydrodynamics, on the motion of a body in a
to the «5Óence
des ingénieurs»
641
resistant medium, on the waterproof of channels
(Fontana 1802), on the water pressure in motion into
vessels, tubes and pipes, on the effect of centrifuge
force on tluid motion (Fontana] 803), and the mature
studies carried out by Louis Lagrange at the early
eighties of 18th century (Lagrange 1781; Lagrange
] 781-85). Finally, we have to mention the translation
of Hydrodynamics treatise of abbé Charles Bossut
(1730-]814) by Gregorio Fontana (Fontana 1785) in
]785.
In France, after the important studies begun by
Mariotte
and le Chevalier
Samuel
Morland
(1625-1695)
(Mor]and 1685), we remember the
scientific
work of C]aude
Antoine
Couplet
(1642-] 722) on the resistance of pipes subject to
great pressure, and then the very editorial effort of
Bernard
Forest de Belidor
(1693-] 761), who
published an important encyclopaedic
treatise on
Architecture hydraulique (2 volumes in 4 tomes)
where he thouroughly investigate on subjects related
to hydraulic engineering and construction machinery
(hydrauJic whee], watermill, windmin, suction pump,
water pump, hydrauJic pump, vessels, tubes, pipes,
and others topics as mari time construction as weirs,
dams, channels, river ports, and others).
The difficult field of mechanica] science was a
challange for many other scientists who obtained a
]arge number of interesting resuJts. Henri de Pitot
(1695-1771)
invented an instrument to measure
running
water;
Antoine
Chézy
(17] 8-] 798)
expressed a mathematica] formula for the evaluation
of water ve]ocity in a channel under constant running
water. This formula is still in use in applied
hydraulics< John Smeaton (1724-1792),
a famous
English engineer, was invo]ved in experimental
hydraulics; Charles Borda (1733-1799) carried out
severa] laboratory tests on tluid resistance and on
liquids' eftlux fram one or more orifices in a vessel.
Charles Bossut (1730-] 814) conducted extensive
studies on hydrodynamics
(Bossut ] 775) and on
experimental hydraulics (Bossut 1795); Pierre Louis
Georges Du Buat (1734-1809)
studied various
phenomena re]ated to tluid motion through pipes and
channe]s and so he described veIocity of water eftlux
fram an orifice, pipes resistance under constant
pressure and then he deve]oped a semi-empirical
method to evaluate channe]s'
cross section in
accordance with Chézy' theory< Finally, we mention
the contributions
of Giovanni Battista Venturi
642
M. Corradi
'\~~
'.
I
n
Figure9
Le Chevalier Morland.
Elevation
des eaux , . . (1685)
(1746-1822)
and Reinhard Woltman (1757-1837)
with their studies on measurement of pipes resistance
under pressure and their researches on water motion
in tubes and channe1s (Rouse and luce 1954).
4. NEW TRENDS IN HYDRAULICS
construction of machinery and instruments to convey
water in rivers, channels, tubes, pipes, etc. It is a
revival of app1ied hydrostatic and hydrodynamics,
glorys 1'or Italy and France in the Renaissance.
The 1'olJowing century will be the century 01'
theoretical hydrodynamics
or t1uid mechanics, but
this is another story.
By the end of the 18thcentury and the beginning of the
19th century, a 1arge number of studies and researches
REFERENCE LIST
on hydrau1ics (hydrostatics and hydrodynamics) was
carried out. This trend was set with an imposing
amount of treatise, books, critical essays on various
topics related with hydraulics and its applications to
engineering.
The work of Pons-Joseph
Bernard
(1748-1816)
on Principes d'Hydraulique
(Bernard
1787), the treatises of Gaspard-Clair-Fran¡;ois-Marie
Le Riche,
Baron de Prony (1755-1839)
on
L'ecoulement
des jluides incompressibiles
[Prony,
1790-96]. on the Jaugeage des eaux courantes
[Prony, 1802], or on the Théorie des Eaux Courantes
(Prony 1804), the essay of Pierre-Simon
Girard
(1765-1836) on the Mouvement des eaux courantes
(Girard 1804), or the critica1 review of Du Buat's
treatise by Fran¡;ois-Michel
Lecreulx (1729-1812)
(Lecreulx 1809) are an anticipation of the publishing
revolution which enhanced the diffusion 01' the new
trend in hydrau1ics scientific community. The Prony's
Nouvelle Architecture Hydraulique (Prony 1790-96)
so as the Belidor' s Architecture hydraulique (Belidor
1737-53) were the basis of applied hydraulics in
engineering
(Belidor
1729). They had a great
diffusion in scientific community and in practical
engineering
as well. They turned theories from
Bernoulli, Bossut, d' Alembert, Euler, Lagrange into
AA. VV. 1765-1774
(2"0 ed.). Raccolla d'autori
che
trallano del moto dell'acque.
9 vols. Firenze: nella
Stamperia di Sua Altezza Reale, Gaetano Cambiagi
Stampator Granduca]e.
Alembert, Jean-Baptiste Le Rond d'. 1743 (2"" ed. 1758).
Traité de Dynamique . . . . Nouvelle Edition, revue &fort
augmentée par l'Auteur. Paris: David.
Alembert, Jean-Baptiste
Le Rond d'. 1744. Traité de
l'équilibre et du mouvement des fluides. Pour Servir de
Suite au Traité de Dynamique. Paris: David.
Alembert, Jean-Baptiste
Le Rond d'. 1752. Essai d'une
Nouvelle Théorie de la Résistance des fluides. Paris:
David.
Alembert, Jean-Baptiste
Le Rond d'. 1770. Traité de
l'équilibre et du mouvement desfluides. Paris: Briasson.
Alembert, Jean-Baptiste
Le Rond d'; Condorcet,
JeanAntoine-Nicolas
Caritat de; Bossut, Charles.
1777.
Nouvelles expériences sur la résislallce des fluides. Paris.
Algarotti, Francesco. l1737] 1739. Il Newtonianismo per le
dame, ovvero Dialoghi sopra la luce, del Cte Francesco
AIgarolli. Napoli: G. B. Pasquali.
Aubuisson
de Voisins, Jean fran<,:oise d'. 1824-1829.
Mémoires sur le mouvement de l'air dan.I'les tuyaux de
conduite . . . Paris: Huzard.
Belidor, Bernard Forest de. 1729. La science des ingénieurs
dans la conduit des travaux des fÓrtifications et
d'architecture civile. Paris: C. Jombert.
From the «Architecture
hydraulique"
Belidor, Bernard
Forest de. 1737-] 753. Architecture
hydraulique. 4 vols. Paris: Charles-Antoine Jombert.
Benvenuto, Edoardo. 199]. An lntroduction to the History of
Structural Mechanics. New York: Springer.
Benvenuto,
Edoardo: Corradi, Massimo.
]988. «Breve
storia del vuoto». Nuova secondaria.
n. 6, 34-41.
Brescia.
Bernard,
Pons-Joseph.
1787.
Nouveaux
Principes
hvdrau/ique.l' appliqués a tous les objets d'utilité, et
particulierement
aux rivieres, précédés
d'un cours
historique et critique sur les principaux ouvrages qui ont
été pub/iés sur le meme sujeto Paris: impr. de Didot a'iné.
Bernoulli, Daniel. 1738. Hydrodynamica,
sive de viribus et
motibus jluidorum
commentarii.
Argentorati: Johannis
Reinho]di Du]seckeri.
Bernou]li,
J ohannis.
1742. Hydrau/ica,
Nunc primum
detecta ac demonstrata
directe ex fundamentis
pure
mechanicis, Anno 1732. [n Johannis Bernoulli, Opera
Omnia, T. IV, pp. 387-493. Lausanne & Genevae.
B]ay, Michel.
]992. La naissance
de la mécanique
analytique. La science du mouvement au tournant des
XVIle et XVIJIe siixles. Paris: puf.
Bossut, Charles. ]775. Traité élémentaire d'hidrodynamique
ouvrage dans lequella théorie et /'experience s 'éclairent
ou se suppléent
mutuellement;
avec des notes sur
plusieurs endroits qui ont paru mériter detre approfondis.
Paris: C]aude-Antoine Jombert.
Bossut, Charles. ] 796. Traité théorique et expérimental
d'hydraulique.
3'" ed. Paris: Laran.
Cametti, Ottaviano. ] 777. Mechanica jluidorum. F]orentia.
Carletti, NiccoIo. 1780. lnstituzioni di architellura idraulica
dedolle dal/e scienz.e di ragione, e di natura, ecc. Napoli.
Castelli, Benedetto. ] 639. Del/a misura del/' acque correnti
di Don Benedello Castel/i Monaco Cassinese. Roma:
nella Stamperia di Francesco Cavalli.
Castelli, Carlo. ] 787.ldrodinamica
ossia scienza del/'acque
teorico-pratica
esposta in un corso elementare. Mi]ano:
Giuseppe Ga]eazzi.
Chézy, Amoine de. 1775. Mémoire sur la vitesse de l'eau
conduite dans une rigole donnée. 1775.
C]airaut, A]exis-Claude.
1743. Théorie de la figure
de la
terre tirée des principes de I'hydrodynamique.
Paris:
David [i]s.
Darcy,
Henri-Philibert-Gaspard.
1857.
Recherches
eXpérimentales relatives ai mouvemel1l de /'eau dans les
tuyaux. Paris: Mallet-Bachelier,
1857.
De Marchi, Giu]io. 1929. Idraulica. Mi]ano: Hoepli.
De Regi, Francesco
Maria.
1764. Uso del/a tavola
Parabolica nel/a misura del/e acque corrC/ai destinate
al/'innaffiamel1lo del/e terre : esposto dal p.d. Francesco
Maria de Regi . . . per regolamento del/'acque nel ducato
di Mantova d'ordine di sua eccel/enza Car/o conte e
signore di Firmian. Milano: nella Regia ducale corte per
Giuseppe Richino Malatesta stampatore regio camerale.
643
to the "Science des ingénieurs»
Du Buat, Pierre Louis Georges. 1786 Principes d'hydraulique,
vérifiés par un grand nombre d'expériencesfaites
par ordre
du gouvernement. 2'" ed. Paris: Impr. de Monsieur.
Dugas, René. ] 955. Histoire de la Mécanique, Neucháte]:
Ed. du GritIon.
Dugas, René. ]988. A History of Mechanics. New York:
Dover.
Duhem, Pierre. []903] ]992. L'évolution de la Mécanique.
Paris.
Eu]er, Leonhard.
1736. Mechanica sive Motus Scientia
analytice exposita.
Fontana, Carlo. ] 696.
diviso in tre libri,
Elperienze di Esse.
T. 1 & n, Petropoli.
Utilissimo trallato del/'Acque Correnti
nel quale Si notificano le Misure, ed
1 Giuochi, e Scherzi, li quali per meZZ.o
del/' Aria, e del fuoco, vengono operati dal/'Acqua, Con
diversi necessarii ammaestramenti intomo al modo di far
Condolli, Fistole, BOllini, ed altro, per condurre I 'Acque
ne luoghi destinati. Con una esalla notizia di tullo quel/o
ch' e stato opera/o in tomo al/a condullura del/' acqua di
Bracciano. . . dal cavalier Car/o Fontana. . . Roma: Gio.
Francesco Buagni.
Fontana, Gregorio. ] 785. Trallato elonentare d'idrodinanÚca
del Sigo Abate 80ssut tradotto dalfrancese: aggiuntevi le
lezioni d'idrodinamica
del P. Gregorio Fontana. Pavia:
Stamperia de] R.l. monisterio di S. Salvatore.
Frisi, Paolo. 1762. Del modo di regolare i jiumi e i torrenti
principalmente
del holognese e del/a Romagna libri tre
del p. d. Paolo Frisi. Lucca: per Vincenzo Giuntini, a
spese di Giovanni Riccomini.
Frisi, PaoIo. 1768. Del modo di regolare i jiumi, e i torrenti .
. . libri tre. Seconda edizione accresciuta. Lucca.
Frisi, Paolo. 1770. Dei ./iumi e torrenti libri tre. Edizione
terza aggiuntovi il trallato dei cana/i navigabili. Firenze.
Frisi, PaoIo. ] 777. lnstituzioni di meccanica, d'idrostatica,
d'idrometria e del/' architellura statica, e idraulica ad
uso del/a regia scuola erella in Milano per gli architelli, e
per g/'ingegneri
del P. Frisi. Mi]ano: Appresso G.
Galeazzi.
Frisi, Paolo. 1783. Operwn tomus secundus, mechanicam
universam et mechanicae
applicationem
ad aquarum
jlaentium theoriam continens. Mediolani.
Gerstner. Franz J oseph, Ritter von. 1804. «Theorie der
Wellen». Ahhandlungen
der kaniglichen
hohmischen
Gesel/shqfi der Wissenschaften. Prague.
Gilmotti, Giovanni Maria. 1713. Ahhachino di Gio: Maria
Gilmolli Padovano con I'instruzioni, e Conti necessarij
a//i Principianti di tal scienza, con la Spiegazione del/a
Regola del/a proporziona/itá
per sciogliere qualunque
quesito () diriftO, Ó everso che sia, con diversi quesiti, e
Regole sopra il he//ico esercizio del/a Bomba, e seoli
d'Acqua non piu messe in luce da altro Autore. Ferrara.
Girard, Pierre Simon. 1804. Essai sur le /l/ouvement des
eaux courantes, et lajigure qu'il convient de donneraux
canaux qui le contiennent.
Paris: Impr. de la République.
644
M. Corradi
Grandi, Guido. 1750. lnstituzioni
meccaniche.
Traltato.
Venezia: Gio. Battista Recurti, 1750.
Guglielmini, Domenico. [1697] 1739. DeUa natura deijiumi
traltato fisico-matematico
eco In cui si mal1lfestano le
principali proprieta de' fiumi . . . Bologna: per gli Eredi
d' Antonio Pisarri.
Guglielmini, Domenico. 1690. Aquarum .fluentium mensura
nova methodo inquisita. Bononiae: typ. Pisariana.
Guglielmini, Domenico. 1691. Aquarum.fluentiwn
mensura
nova methodo inquisita. Pars altera Bononiae: typ.
Pisariana.
Hermann, Jacob. 1716. Phoronomia,
sive de virihus et
motihus corporum so/idorum et fluidorum. Amsterdam:
Rod. & Gerh. Wetstenios.
Lagrange, Joseph-Louis. 1770-1773. "Sur la percussion des
t1uides». MisceUanea
taurinensia.
t. V, ano AIso in
Memorie dell 'Accademia di Torino, t. 1, par. 1, 1781-85.
Lagrange,
Joseph-Louis.
1781. "Sur la théorie
des
Mouvements
des Fluides».
Nouvelles
Mémoires
de
l'Académie Royale de Serlin, An. /781.
Lagrange, Joseph-Louis.
1788. Méchanique
analytique.
Paris.
Lecreulx, (s.n.). 1809. Examen critique de l'ouvrage de M.
Duhuat sur les principes de 1Bydraulique.
Paris: F.
Didot.
Lorgna, Anton-Maria.
1777. Memoria intorno aU'acque
correnti. Verona: nella Stamperia Moroni.
Mach, Ernst. 1968. La Meccanica nel suo sviluppo sto ricocritico, (trad. it.). Torino: Boringhieri.
Marcolongo, Roberto. 1904. Meccanica razionale. Milano:
Hoepli.
Mariotte, Edme. 1686. haité du Mouvemellt des Eaux et des
aLtlres corps fluides. Divisé en V. Parties. Par le feu M.
Mariolte . . . . Mis en lumiere par les soim de M. de la
Hire, . . . Paris: Estienne Michallet.
Mariotte, Edme. 17] 8. A Treatise oj' the Motion oj' Water,
and other Fluids: With the Origin oj' Fountains or
Springs, and the Cause o( Winds. In which Treatise, the
Manner of Levelling or Conducting Rivers, in order to
make them Navigahle; the making o( Aqueducts . . . cont.
London: J. Senex and W. Taylor.
Mazzucchel1i,
Girolamo.
1784. Instituzione
idrostatica.
Roma.
Mazzucchelli,
Girolamo. 1796. Instituzione idrodinamica.
Pavia.
Morland, Le Chevalier. 1685. Elevation des eaux par toute
sorte de machines reduite a la mesure, au poids, a la
ha lance. Paris: impr. de G. Martin.
Newton,
Isaac. 1671 (published
in 1736). Methodus
.f1uxionwn et serierum infinitarum.
Newton, Isaac. 196]-1981.
The Mathematical
Papers of
Isaac Newton, edited by D.T. Whiteside et al. 8 voll.
Cambridge: Cambridge University Press.
Picon, Antoine. 1992. L'invention de l'ingénieur moderne.
Paris: Presses des Ponts et chaussées.
Pitot, Henry. 1735. «Description
d'une Machine pour
mesurer la vitesse des Eaux courantes et le sillage des
Vaisseaux».
Histoires
de l'Académie
Royale
des
Sciences, Année 1732, 363-376. Paris.
Poleni, Giovanni. 1717. De Motu Aquae Mixto Lihri Duo.
Quihus multa nova pertinentia ad Aestuaria, ad Portus,
atque ad Flumina colltinentur. Patavii: losephi Comini.
Prony, Gaspard-Fran~ois-Clair-Marie
Le Riche de. (1790).
Solution
du prohleme
de l' ecoulement
des fluides
incompressihiles
et pesans par des orifices horisontaux,
dans l'hypothese du parallelisme des tranches.
Prony,
Gaspard-Fran~ois-Clair-Marie
Le Riche
de.
1790-96. Nouvelle Architecture Hydraulique, contenant
l'art d'élever l'eau au moyen de différentes machines, de
construire dans ce fluide, de le diriger, et généralement
de I'appliquer, de diverses manieres, aux hesoins de la
société. Paris: Firmin-Didot.
Prony, Gaspard-Fran~ois-Clair-Marie
Le Riche de. 1802.
Mémoire sur le jaugeage des eaux courantes. Paris:
lmprimerie de ]a République.
Prony, Gaspard-Fran\;ois-Clair-Marie
Le Riehe de. 1804.
Recherches physico-mathématiques
sur la théorie des
Eaux Courantes. Paris: Imprimerie Impériale.
Rieeati,
Jacopo.
1761. Saggio
intorno
il Sistema
dell'Universo. Lucca.
Rouse, Hunter; Inee, Simon. 1954. History o( Hydraulics.
Iowa City: lowa lnstitute of Hydraulic Research.
Szabó, lstván.
1977. Geschichte
der mechanischen
Prinzipien. Base]: Birkháuser.
Todhunter, lsaae; Pearson, Karl. ] 886-93. A History o( the
Theory of Elasticity al1d o( the Strel1gth of Materials jrom
Galilei 10 Lord Kelvin. Cambridge.
Torrieel1i, Evangelista. 1644. Opera geoll1etrica. Libro ll:
De motu. Florentiae.
Truesdell, Clifford A.. 1954. Rational Fluid Mechanics.
Introductiol1 to Leonhardi Euleri Opera Omnia. Ser. 2,
vo!. XII. Turiei: Orell Füssli.
Truesdell, Clifford A.. 1968. Essays in the History o/,
Mechanics. New York: Springer.
Varignon,
Pierre.
1690. Nouvelles
cOl1jectures sur la
pesanteur. Paris: chez J. Boudot.
Varignon, Pierre. 1725. Traité du mouvement
et de la
mesure des eQ¡/X coulantes et jaillissantes.
Tiré des
Ouvrages Manuscrits de seu MOl1sieur Varignon, par M.
1'Ahhé Pujo!. Paris: ehez Pissot.
Venturoli,
Giuseppe.
1806. Elementi
di Meccanica
e
d'ldraulica. Mi]ano.
Voltaire (Fran~ois-Marie Arouet le Jeune). 1738. Eléments
de la philosophie de Newton. Paris.
Weidleri,
lo. Frideriei.
1733. Tractatus
de Machinis
Hydraulicis . . . Vitembergae.
Scarica

From the «Architecture hydraulique» to the «Science des ingénieurs