Laura Carroccia, Leonardo Degennaro, Arianna Giovine, Maddalena De Renzo, Flavio Fanelli and Renzo Luisi http://www.farmchim.uniba.it/chimica_organica/Luisi2.html Bari, 28 Febbraio 2014 FLAME – Lab Flow Chemistry and Microreactor Technology Laboratory Department of Pharmacy Drug Sciences Project financially supported by: PON – R.A.I.S.E. Reasearch, Application, Innovation, Services in Bioimaging Meeting the Green Chemistry Principles 1. Prevention * 2. Atom Economy * 3. Less Hazardous Chemical Syntheses * 4. Design Safer Chemicals 5. Safer Solvents and Auxiliaries * 6. Design for Energy Efficiency * 7. Use Renewable Feedstocks 8. Reduce Derivatives * 9. Catalysis * 10. Design for Degradation 11. Real-time Analysis for Pollution Prevention 12. Inherently Safer * * Principles addressed by the Microreactor Technology Contacts: Prof. Renzo Luisi Department of Pharmacy – Drug Sciences University of Bari “A. Moro” VIA E. ORABONA 4 – I-70125 BARI, Italy tel: +390805442762 fax: +390805442539, e-mail: [email protected] Batch chemistry Microreactor technology Faster Cleaner Cheaper Safer K. Jhnisch, V. Hessel, H. Lwe, M. Baerns Angew. Chem. Int. Ed. 2004, 406. T. Wirth Microreactors in Organic Synthesis and Catalysis 2008, Wiley – VCH Time-dependent transformation Angew. Chem. Int. Ed. 2012, 3245 CH3 N (S) R H3C N s-BuLi, TMEDA Toluene, -78 °C N (S) Li Li Li R N CH3 E+ E+ E R N Racemic (S) E Main product at -78 °C in toluene R N Main product at -30 °C in toluene A. Giovine, B. Musio, L. Degennaro, A. Flacicchio, A. Nagaki, J-i Yoshida, R. Luisi Chem. Eur. J. 2013, 1672 Me N Me N -48 °C 0.1 M in toluene/TMEDA -48 °C 0.1 M in toluene/TMEDA P1 tR M1 s-BuLi R1 E N P2 M2 0.3 M in hexane + Me s-BuLi P1 M1 P3 tR2 R1 R2 P2 0.3 M in hexane M2 E+ R2 E tR1 0 °C E R3 N tR3 P3 Me 0.4 M in toluene ELECTROPHILE YIELD (%)a ClSiMe3 60 0.4 M in toluene ELECTROPHILE YIELD (%)a C6H10O 58 ClSiMe3 90 PhCOPh 60 C6H10O 48 MeCOPh 75 (dr=52:48) t-BuCHO 90 (dr=82:18) EtCOPh 77 (dr=82:18) p-CF3-PhCHO 54 (dr=45:55) t-BuCOH 70 (dr=70:30) PhCHO 95 (dr=45:55) 2,6-(CH3)2PhNCO 58 2,4,6-(Me)3-PhCHO 63 (dr=70:30) C6H11NCS 73 2,6-(Me)2PhNCO 95 a : isolated yield Reaction conditions: tR = 20.9 s; Flow rate: aziridine 1a 3 mL/min; s-BuLi 1.5 mL/min A. Giovine, B. Musio, L. Degennaro, A. Flacicchio, A. Nagaki, J-i Yoshida, R. Luisi Chem. Eur. J. 2013, 1672 a : isolated yield Reaction conditions: tR1 = 20.9 s; tR2 = 41.9 s; flow rates: aziridine1a 3 mL/min; s-BuLi 1.5 mL/min; electrophile 1.5 mL/min. Me Me N N 0 °C Me 0 °C 0.05 M in toluene/TMEDA N P1 tR M1 s-BuLi s-BuLi R1 P2 M2 0.15 M in hexane E+ 0.05 M in toluene/TMEDA R2 1 P1 M1 N tR2 R1 R2 P2 0.15 M in hexane E Me tR1 60 °C E R3 M2 E+ N P3 Me 0.2 M in toluene P3 E 0.2 M in toluene 2 E+ Yield (%)[a,b] dr SiMe3Cl 78 50:50 MeI 57[e] 56:44 Cyclohexanone 50 60:40 93:7 Acetone 60 50:50 74 10:90 C6H5CON(CH3)(OCH3) 53 55:45 68 5:95 2,6-(CH3)2-C6H3NCO 51 50:50 E+ Yield (%)[a] 1:2 ratios CD3OD 98 80:20 EtI 90[c] 62:38 Acetone 86 65:35 iPrI 53 Ph2CO SiMe3Cl a: Overall isolated yield Reaction conditions: tR = 5.24 s; flow rate: aziridine1a 3 mL/min; s-BuLi 1.5 mL/min; electrophile 1.5 mL/min a: Overall isolated yields. b: Relative stereochemistry not assigned Reaction conditions: tR1 = 5.24 s; tR2 = 10.5 s; flow rate: aziridine1a 3 mL/min; s-BuLi 1.5 mL/min; electrophile 1.5 mL/min. A. Giovine, B. Musio, L. Degennaro, A. Flacicchio, A. Nagaki, J-i Yoshida, R. Luisi Chem. Eur. J. 2013, 1672 In line with the principles of ‘‘green’’ chemistry, organocatalysis seeks to reduce energy consumption and to optimize the use of the available resources, aiming to become a sustainable strategy in chemical transformations. Organocatalysts consist of small, low-molecular-weight organic compounds, containing carbon, hydrogen, nitrogen, sulfur and phosphorus. The benefits of using organocatalysts is that they are inexpensive, easily available, and nontoxic. Furthermore, the organocatalyst are often insensitive toward moisture and oxygen, and hence, no special reaction conditions are required. Aldol reaction Angew. Chem. Int. Ed. 2009, 48, 2699 – 2702 Baylis-Hilman reaction Chin. J. Chem. 2011, 29, 2385 – 2388. L. Carroccia, B. Musio, L. Degennaro, G. Romanazzi, R.Luisi, J. Flow Chem., 2013, 29-33 O N N N H HN N 1a 10% catalyst 95% yield er: 66/34 dr: 90:10 25 °C, 3h DMSO soluble Ph P N H t H N Ph N H OTMS SO2Ph N H Ph Ph 1d O 1c 1b 10% catalyst 56% yield er: 93/7 dr: 95:5 40 °C, 28h CH2Cl2 soluble Ph R2 N H N S N H Ph N 1f N H N H 1g 10% catalyst <1% yield suspension in CH2Cl2, toluene 10% catalyst <1% yield suspension in CH2Cl2, toluene R2 R1 O O (1 equiv.) + NH2 O Bu S O R1 + R 80 °C, 100 min DMSO N H 10% catalyst <1% yield suspension in CH2Cl2, toluene R2 N HN N 8% N H 1e N N H H N Bu S O 10% catalyst <1% yield suspension in CH2Cl2, THF, toluene 10% catalyst 40% yield er: 53:47 dr: 88/12 80 °C, 1.5h EtOH/iPrOH 1:1 soluble t Me N NO2 NO2 R A+ ent A NO2 R B+ ent B R1 (1 equiv.) CH3 Br Br inlet O O NO2 O NO2 Ph 88 % dr: 87:13 er: 61:39 87 % dr: 90:10 er: 68/32 O NO2 CH3 92 % dr: 90:10 er: 67:33 O NO2 OMe NO2 CH3 98 % dr: 81:19 er: 70:30 93 % dr: 91:9 er: 85:15 L. Carroccia, B. Musio, L. Degennaro, G. Romanazzi, R.Luisi, J. Flow Chem., 2013, 29-33 output N N H N HN N 12% 80 °C, 100 min DMSO O O Ar N + (1 equiv.) + NO2 Ar (1 equiv.) NO2 Ph CHO + DIPEA (1 equiv.) N H N HN N 80 °C, 76 min DMSO Ph OHC NO2 HO Ph OHC + NO2 HO Ar Ar A er : 76:24 L. Carroccia, B. Musio, L. Degennaro, G. Romanazzi, R.Luisi, J. Flow Chem., 2013, 29-33 B er : 89:11 Ar = 4-BrC6H4 Yield 89 % dr (A:B) = 46:54 UNIVERSITÀ DEGLI STUDI DI BARI “A. Moro” Prof. Renzo Luisi Dr. Leonardo Degennaro Dr. Arianna Giovine Dr. Biagia Musio Dr. Piera Trinchera Dr. Marina Zenzola Dr. Paolo Pace Dr. Vito Costanza Dr. Flavio Fanelli Dr. Vanna Parisi Mara Anelli Maddalena De Renzo Sara Pellicano KYOTO UNIVERSITY Prof. Jun-ichi Yoshida Dr. Aichiro Nagaki POLITECNICO DI BARI Dr. Giuseppe Romanazzi IC CNR BARI Dr. Aurelia Falcicchio Dr. Angela Altomare - IC CNR Bari