Università degli Studi dell’Aquila
Facoltà di Ingegneria
Corso di Laurea in Ingegneria Chimica
Studio concettuale del processo di
distillazione per le miscele ternarie
Relatore
Prof. Nader Jand
Studente
Andrea Romano
172412
A.A. 2010/2011
Indice
Capitolo 1: Introduzione
Capitolo 2: Distillazione
2.1 Distillazione binaria e metodo di McCabe-Thiele
2.2 Distillazione multicomponente e metodi approssimati
Capitolo 3: I gradi di libertà e la distillazione in chemcad
3.1 I gradi di libertà
3.2 Il programma di simulazione chemcad
3.3 Colonna short cut
3.4 Colonna tower
Capitolo 4: Distillazione azeotropica
4.1 Azeotropo
4.2 Processi di separazione per miscele azeotropiche
4.3 Caratteristiche particolari di una colonna di distillazione azeotropica
4.4 Scelta del trascinatore
4.5 Analisi di fattibilità
4.6 Sequenze di colonne
Capitolo 5: Curve residue e costruzione DRD
5.1 Curve residue
5.2 DRD
5.3 Classificazione DRD
5.4 Struttura dell’algoritmo
2
1.INTRODUZIONE
Questo lavoro ha lo scopo di fare un’analisi generale sulla distillazione delle miscele
ternarie interessate dal fenomeno dell'azeotropia omogenea; argomento molto
importante e frequente nell’industria chimica.
Negli ultimi venti anni molti autori hanno intrapreso lo studio di questo argomento
fornendo dei nuovi metodi per la risoluzione della separazione di miscele
azeotropiche.
In questa tesi c’è una prima trattazione sintetica sulla distillazione semplice binaria e
sul metodo di McCabe -Thiele, già studiati durante il corso di studi. Segue
l'estensione alle miscele multicomponente attraverso lo studio di metodi
approssimati, detti anche di short cut, che possono essere usati per fare uno studio
preliminare della fattibilità un processo di distillazione. I risultati ottenuti attraverso
metodi short cut spesso sono poi utilizzati per fornire i valori iniziali nel calcolo più
preciso attraverso implementazione dei modelli rigorosi di calcolo stadio per stadio.
Nello studio e trattazione della distillazione delle miscele ternarie facilmente
interessate dai fenomeni di azeotropia, particolare attenzione è stata rivolta negli
ultimi dieci anni alle mappe delle curve residue e alle linee di distillazione, strumenti
geometrici che permettono di avere indicazioni preziose sul progetto del processo di
separazione e sulla sequenza delle colonne. Grazie alle mappe residue e alle linee di
distillazione è possibile effettuare uno studio preliminare delle composizioni fattibili
coi metodi grafici.
Nella tesi è descritta in dettaglio una procedura per la determinazione qualitativa
delle mappe delle curve residue per miscele ternarie che richiede un numero
minimo di dati delle temperature di ebollizione dei componenti puri e degli
eventuali azeotropi, e permette: sia di verificare la consistenza termodinamica dei
dati senza ricorrere alla soluzione rigorosa dell’equilibrio liquido vapore, sia -in molti
casi- permette di ottenere un'analisi quantitativa delle mappe residue.
Per la costruzione di queste mappe delle curve residue è stato sviluppato ed
implementato un algoritmo basato sulla procedura maggiormente suggerito nella
3
letteratura scientifica da molti ricercatori, nel linguaggio Justbasic in sistema
operativo windows. Il programma possiede un'interfaccia grafica che permette
appunto di inserire le temperature di ebollizione delle specie pure ed azeotropi
presenti nel sistema (per ora solo binari), procede e classifica la natura dei
componenti puri come nodi stabili, instabili o selle. In caso della presenza degli
azeotropi binari verifica la consistenza dei dati e nel caso positivo procede e
classifica la loro natura come per i componenti puri.
Al termine provvede una rappresentazione delle mappe residue tracciando
mediante presenza di eventuali confini, le varie regioni di distillazione.
4
2.Distillazione
2.1Distillazione binaria, metodo di McCabe-Thiele
Il progetto di colonne di distillazione binaria può essere realizzato attraverso dei
metodi grafici. Il metodo grafico più conosciuto e studiato è il metodo di McCabeThiele pensato per le soluzioni binarie. Questo si basa sulla rappresentazione delle
equazioni di bilancio di materia come delle linee operative sul diagramma x-y. Per
fare questo c’è bisogno di partire da ipotesi semplificative del sistema.
Ipotesi di McCabe-Thiele:
Portate costanti ma non uguali, lungo la sezione di arricchimento e di esaurimento
Pressione operativa costante lungo la colonna
Inoltre nei singoli piatti deve esserci solo scambio di calore latente, quindi i piatti
vicini devono avere piccoli ∆T in modo che gli apporti di calore sensibile siano
trascurabili.
Qc
R
V,y
D,xD
L,x
Con queste ipotesi il bilancio di materia della zona di arricchimento si può scrivere
come:
Da cui:
Retta di lavoro
5
Rapporto di riflusso
e quindi
Questa è un’equazione di una retta.
Sul diagramma x y si rappresenta in questo modo:
y
XD
D
xD
x
Per la zona di esaurimento:
L*,x
V*, y
QR
y
B, xB
L*/V*
xR
xR
x
Per
Per tracciare le rette si può cercare il luogo dei punti dove le due rette di lavoro si
intersecano (q-line).
6
Da cui la q- line è:
Dove
La q rappresenta il calore richiesto per convertire una mole di alimentazione dalla
sua condizione HF a vapore saturo diviso per il calore latente.
Per le diverse condizioni termiche dell’alimentazione può assumere diversi valori:
Liquido sotto raffreddato q>1
Liquido saturo q=1
Miscela liquido-vapore 0<q<1
Vapore saturo q=0
Vapore surriscaldato q<0
Fissando HF e quindi la composizione, la temperatura e la pressione, la pressione
della colonna e le specifiche xB e xD si conosce la q-line. Si sceglie un R > Rmin e così si
può tracciare la retta dell’arricchimento. Dalla sua intersezione con la q-line si può
tracciare anche la retta della sezione di esaurimento.
q-line
xr
xF
xd
7
I calori al ribollitore e al condensatore sono calcolati attraverso un bilancio di
energia.
E
2.2 Metodi di calcolo approssimati
Per la risoluzione di problemi di separazioni anche per miscele multicomponenti
sono utili alcuni metodi di calcolo approssimati.
Un gran numero di casi può essere studiato velocemente con uno dei metodi
approssimati per definire a grandi linee i parametri di progetto, che poi andranno
affinati attraverso lo studio con metodi rigorosi.
Il metodo più frequentemente incontrato è il metodo di FUG (Fenske-UnderwoodGilliland), che combina l’equazione di Fenske a riflusso totale e quella del riflusso
minimo di Underwood con la correlazione grafica di Gilliland, che riporta la
prestazione reale della colonna alle condizioni di riflusso totale e minimo per una
specifica separazione di due componenti chiave.
FUG
L’equazione di Fenske è usata per calcolare Nmin, che è il numero minimo di piatti,
richiesto per fare la separazione a riflusso totale. Le equazioni di Underwood sono
usate per stimare il rapporto minimo di riflusso Rmin mentre la relazione empirica di
Gilliland usa questi valori per dare il numero di stadi per ogni rapporto di riflusso e
viceversa.
La seguente equazione sviluppata da Molokanov fitta bene la curva di Gilliland:
N-Nmin=1-
(1.1)
Dove =(R-Rmin)/R+1
(1.2)
L’equazione di Fenske a riflusso totale può essere scritta come:
8
D=
(1.3)
B
O come:Nmin=
(1.4)
Dove i è indice di un generico componente mentre r è indice del componente di
riferimento scelto arbitrariamente nel definire le volatilità relative:
=
(1.5)
=
La stima del α medio è calcolato attraverso:
(1.6)
Dove, i valore di αi devono essere noti o stimati ed è questa l’approssimazione
iniziale.
Solitamente α viene stimato attraverso:
α=
(1.7)
o attraverso:
α=
(1.8)
La separazione che ci sarà nella colonna con un numero di stadi di equilibrio può
essere stimata abbastanza bene specificando la separazione di un componente (per
esempio il componente di riferimento r), fissando Nmin al 40\60% del numero di stadi
di equilibrio, e poi usando l’equazione (1.4) per studiare la separazione degli altri
componenti.
Si tratta di un calcolo iterativo perché il componente diviso deve essere prima
assunto per dare la composizione finale che può essere usata per trovare la prima
end-temperature stimata. I valori di αtop e di αbottom che derivano da queste endtemperature sono usati nella (1.7) per dare αi per ogni componente.
L’iterazione continua finché i valori di αi non cambiano da un’iterazione all’altra.
Le equazioni di Underwood sono:
α
α
=
(1.9)
9
E
α
α
(1.10)
Le volatilità relative sono definite dalla (1.5), Rmin è il rapporto di riflusso minimo,e q
determina la condizione termica del feed (uno se è liquido saturo, zero se è vapore
saturo), ZiF è la composizione del feed, è il parametro di Underwood.
IL valore di è compreso tra la volatilità del componente più leggero αlk e quella del
componente più pesante αhk.
I valori di αi in (1.9) e (1.10) sono ottenuti da (1.7) e (1.8). Quando queste sono
disponibili può essere calcolato con un’iterazione lineare dalla (1.10).
IL metodo FUG è conveniente per il progetto di nuove colonne con le seguenti
specifiche:
1 ) R / Rmin
2 ) la separazione desiderata per un componente di riferimento (solitamente il
pesante)
3 ) Separazione desiderata di un altro componente
Il numero totale di stadi di equilibrio N, N / Nmin o Rmin possono sostituire una delle
tre specifiche.
Il piatto di ingresso del feed è automaticamente calcolato nel punto ottimo. Questi
metodi si basano sull’assunzione di portate molari lungo la colonna e volatilità
relative costanti.
La procedura di progetto short-cut costituisce uno strumento per valutare
rapidamente i progetti alternativi e la possibilità di eseguire una ottimizzazione
preliminare, oltre a fornire una stima iniziale per una simulazione rigorosa
dell’impianto.
METODO DI KREMSER
Un’altra procedura di calcolo approssimata è il metodo di Kremser di maggiore
complessità, che permette di valutare il comportamento di gruppi di stadi di
equilibrio in una controcorrente in cascata, quindi è utile nello studio di problemi di
assorbimento, stripping e distillazione.
10
In realtà questo metodo non è adatto a stimare precisamente le temperature di ogni
stadio, che sono considerevolmente diverse da quelle delle due correnti entranti,
quando ci sono apprezzabili cambiamenti di composizione. Tuttavia può essere
molto utile per dare una stima preliminare delle portate e del numero di stadi di
equilibrio richiesti.
Si considera la classica cascata in controcorrente adiabatica di N stadi, dove v e l
sono le portate del vapore e liquido entranti.
L’uso dei bilanci di materia sui componenti e delle equazioni di equilibrio per gli
stadi da 1 fino a N - 1, da 1 fino a N - 2 e così via, porta alle equazioni ricavate da
Kremser.
(1.11)
Dove:
=
(1.12) è la frazione del componente i nel vapore non
assorbita.
E:
=
(1.13)
È la frazione del componente i nel liquido all’ingresso che non è strippata.
=
(1.14)
è il fattore di assorbimento medio per il componente i-esimo.
(1.15)
È il fattore di stripping medio per il componente i-esimo.
Se le K sono indipendenti dalle composizioni allora :
(1.16)
Quando si verifica un assorbimento o uno stripping apprezzabile i valori di Ai e di Si
dovrebbero essere calcolati con il valore medio di L,V e Ki lungo la cascata.
Sostituendo nella 1.16 al posto di TN+1 (Tn+1+T0)/2 si può avere una prima
approssimazione di
Nel caso di un assorbimento,in cui LN+1<Le e V0>Ve, ci sarà
una compensazione dovuta al fatto che Ki
<Ki
.
11
Una stima della minima portata assorbente, quindi una colonna con un numero
infinito di stadi, per una specifica separazione dal gas in entrata di un componente
chiave si ottiene dalla (1.12) come:
=
(1.17)
Si assume che il componente chiave non è presente nel liquido all’ingresso e che la
frazione assorbita del gas alimentazione è bassa.
Nel caso di stripping:
=
(1.18)
Metodo di Edmister
Edmister ha applicato i metodi approssimati al calcolo di separatori complessi, dove
le cascate sono accoppiate con condensatori, ribollitori e ad altre cascate.
Le equazioni del recupero per l’arricchimento le otteniamo facendo delle
sostituzioni con i bilanci di materia e di equilibrio.
= +d
(1.19)
= +d (1.20)
(1.21) dove
(1.22) se la condensazione è parziale
(1.23) se la condensazione è totale
Nell’arricchimento le equazioni di recupero per ogni specie sono:
=
– 1 (1.24)
=
(1.25)
Dove con E si indica arricchimento
Per l’esaurimento:
=
(1.26)
12
Oppure:
(1.27)
Dove:
(1.28) per un ribollitore parziale
Con X si indica esaurimento.
Il fattore di assorbimento per il piatto di alimentazione è:
=
(1.28)
Combinando la 1.25, la 1.27 e la 1.28 si ha
/
(1.29)
Le specifiche da fissare per applicare il metodo di Edmister sono il numero di stadi di
equilibrio sopra l’alimentazione (N) , gli stadi al di sotto dell’alimentazione (M), il
rapporto di riflusso e la portata di distillato.
La prima iterazione è l’assunzione della separazione dell’alimentazione nel distillato
e nel residuo, e nel determinare poi le corrispondenti temperature dei prodotti.
Le portate di liquido e del vapore al di sopra dell’alimentazione sono fissate da D e
L0. Questo consente di calcolare il calore al ribollitore e al condensatore.
Con il calore al fondo colonna le portate di liquido e vapore nell’esaurimento sono
determinate. Le portate nella zona di alimentazione sono prese come media dei
valori calcolati, grazie all’assunzione che le portate molari sono costanti lungo la
colonna.
Dopo l’assunzione della T del feed con la 1.29 si possono calcolare le separazioni per
ogni componente.
13
3. Gradi di libertà e la distillazione in chemcad
In questo capitolo si trattano i gradi di libertà nel calcolo di una colonna di
distillazione e le specifiche da fissare nel progetto di una colonna, indispensabili
nello studio rigoroso del processo di distillazione.
Per il calcolo dei metodi rigorosi stadio per stadio è supposto che venga utilizzato
Chemcad, uno dei più diffusi simulatori di processo in Ingegneria Chimica. Si vuole
indagare in che modo i vari algoritmi implementati a questo scopo in questo
programma saturano i gradi di libertà di una colonna di distillazione chiedendo
alcune specifiche dall'utente.
3.1 Gradi di libertà
Il numero totale di variabili in uno stadio di equilibrio adiabatico, in cui ci sono C
componenti, sono (C + 2) * 4, in quanto sono C + 2 variabili per ogni corrente.
Considerando lo stadio all’equilibrio il numero di equazioni disponibili sono:
Equilibrio meccanico
1
PV out = PL out
Equilibrio termico
1
TV out = TL out
Relazioni di equilibrio
C
Bilanci di materia
C
Quindi in definitiva rimangono 2C + 6 gradi di libertà.
14
Fissando delle specifiche il sistema i gradi di libertà diventano 0 e il sistema è
determinato.
Generalmente si fissano:
La portata L in
1
La portata Vin
1
Le frazioni molari x i di L in
C-1
Le frazioni molari y i di V in
C-1
Temperatura e pressione di L in
2
Temperatura e pressione di V in
2
La pressione di stadio
1
La temperatura di stadio
1
Così i gradi di libertà diventano pari a 0.
Se gli stadi di equilibrio adiabatici sono 2:
I gradi di libertà qui si possono considerare come la somma di quelli dei singoli stadi.
Quindi qui sono 2 (2c + 6). Ai quali si sottraggono le specifiche delle due correnti
comuni, quindi 2 (c +2). Ne rimangono in definitiva 2c + 8.
Fissando poi:
Le specifiche di due correnti entranti
2(c + 2)
Le due temperature degli stadi
2
15
Le due pressioni degli stadi
2
Il sistema è totalmente caratterizzato.
Si può generalizzare questo ragionamento considerando N stadi adiabatici
N
N-1
2
1
Considerando N numero di stadi (2C + 6)gradi di libertà del singolo stadio - 2(N - 1)(C + 2)correnti comuni +
1numero di piatti si ottengono 2N + 2C + 5 gradi di libertà.
Fissando quindi:
Le pressioni degli stadi
N
Le temperature degli stadi
N
Le frazioni molari di due correnti
2(C – 1)
Le portate di due correnti
2
Le temperature e le pressioni delle due correnti 4
Numero di piatti
1
16
In un separatore, invece le variabili sono 3(C + 2 ) + 1. Cioè C + 2 per ogni corrente e
1 per un possibile trasferimento di energia.
LC
LN+1
D
q
Il numero di relazioni indipendenti che si possono scrivere sono:
T e P uguali delle correnti D e LN+1
2
Composizioni uguali di D e LN+1
C-1
Bilanci di materia
C
Bilancio di energia
1
I gradi di libertà sono quindi
(3 C + 7) – ( 2 C + 2) = C + 5
Si fissano allora:
Le specifiche della corrente entrante
C+2
Il rapporto LN+1/D
1
Il calore q
1
La pressione delle correnti uscenti
1
Nel caso di una colonna di distillazione con un condensatore totale in testa alla
colonna e con un ribollitore parziale in fondo colonna i gradi di libertà sono 2N + C +
9.
17
qc
D
LN+1
F
qr
B
Si fissano così:
Le specifiche dell’alimentazione
C+2
Le pressioni degli stadi
N
Le temperature degli stadi
N
La pressione del separatore
1
La pressione del condensatore
1
Inoltre nel caso di progetto si specificano:
Il recupero del componente chiave leggero
1
Il recupero del componente chiave pesante
1
Il rapporto di riflusso
1
Lo stadio di alimentazione
1
Il condensato alla temperatura di condensazione
1
Nella verifica invece:
18
Il numero di stadi sopra e sotto l’alimentazione
2
Il rapporto di riflusso
1
La portata del distillato
1
Il condensato alla temperatura di saturazione
1
Nel caso di una colonna con N stadi con un ribollitore e un condensatore parziale ci
sono 2 N + C + 6 gradi di libertà.
Le variabili da specificare in fase di progetto in questo sono:
Il recupero del componente chiave leggero
Il recupero del componente chiave pesante
Il rapporto di riflusso
Il piatto di alimentazione
In fase di verifica invece:
Il numero di piatti sopra e sotto il piatto di alimentazione
Il rapporto di riflusso
La portata di distillato
Gradi di libertà di alcuni elementi ed unità delle operazioni di separazione:
Numero di variabili
q
L
V
Relazioni
indipendenti
Ribollitore totale
2C + 5
C+1
Condensatore
totale
2C + 5
C+1
Gradi di libertà
C+4
q
V
L
q
19
C+4
V
L
L
q
V
V
L
Lout
Vin
Vout
Lin
q
Lout
Lin
Vout
F
Vin
Lout
Vout
N
Lin
QN
QN-1
Q2
Q1
1
Vin
3C + 7
2C + 3
C+4
Condensatore
parziale
3C + 7
2C + 3
C+4
Stadio di equilibrio
adiabatico
4C + 8
2C + 2
2C + 6
Stadio di equilibrio
con scambio di
calore
4C + 9
2C + 3
2C + 6
Stadio di equilibrio
con scambio di
calore e
un’alimentazione
5C + 16
2C + 8
3C + 8
N stadi di equilibrio
con scambio di
calore
7N + 2NC +2C + 7
5N + 2NC + 2
2N + 2C + 5
Separatore
3C + 7
2C + 2
C+5
Lin
Vout
Vin
Ribollitore parziale
Lout
qq
L2
L1
L3
Tabella riassuntiva dei gradi di libertà e delle specifiche di alcuni processi:
PROCESSO
Gradi di libertà
SPECIFICHE NEL CASO DI
PROGETTO
SPECIFICHE NEL CASO DI
VERIFICA
ASSORBIMENTO
2N + 2C + 5
RECUPERO DI UN
COMPONENTE CHIAVE
NUMERO DI STADI
STRIPPING
2N + 2C + 5
RECUPERO DI UN
COMPONENTE CHIAVE
NUMERO DI STADI
20
DISTILLAZIONE
(UN’ALIMENTAZIONE,
CONDENSATORE TOTALE,
RIBOLLITORE PARZIALE)
2N + C + 9
DISTILLAZIONE
(UN’ALIMENTAZIONE,
CONDENSATORE PARZIALE,
RIBOLLITORE PARZIALE)
2N + C + 6
ESTRAZIONE LIQUIDOLIQUIDO CON DUE
SOLVENTI(CON TRE
INGRESSI)
2N + 3C + 8
RECUPERO DEL
COMPONENTE CHIAVE
PESANTE
RECUPERO DEL
COMPONENTE CHIACE
LEGGERO
RAPPORTO DI RIFLUSSO
STADIO OTTIMO
DELL’ALIMENTAZIONE
CONDENSATO ALLA
TEMPERATURA DI
SATURAZIONE
RECUPERO COMPONENTE
CHIAVE LEGGERO
RECUPERO DEL
COMPONENTE CHIAVE
PESANTE
RAPPORTO DI RIFLUSSO
STADIO OTTIMO
DELL’ALIMENTAZIONE
RECUPERI DI DUE
COMPONENTI CHIAVE
NUMERO DI STADI SOTTO
E SOPRA
L’ALIMENTAZIONE
RAPPORTO DI RIFLUSSO
PORTATA DEL DISTILLATO
CONDENSATO ALLA
TEMPERATURA DI
SATURAZIONE
NUMERO DI STADI SOTTO
E SOPRA
L’ALIMENTAZIONE
RAPPORTO DI RIFLUSSO
PORTATA DEL DISTILLATO
NUMERO DI STADI SOPRA
E SOTTO
L’ALIMENTAZIONE
3.2 IL PROGRAMMA DI SIMULAZIONE CHEMCAD
La grande mole di calcoli, bilanci di materia, energia, relazioni di equilibrio, necessari
per la risoluzione di una colonna di distillazione fa si che venga utilizzato il
programma di simulazione chemcad.
Questo programma possiede una banca dati con migliaia di elementi e composti
chimici. Inoltre ha un grande database con dati termodinamici e con le più comuni
operazioni unitarie.
Chemcad può fare simulazioni di processi continui, calcoli di proprietà fisiche,
dimensionamento e costi di apparecchiature e altri calcoli tipici dell’ingegneria
chimica.
Questo software è costituito da diversi moduli operanti tutti in un unico programma
ma ognuno con una propria licenza.
I moduli presenti sono i seguenti:
CC-STEADY STATE progetta nuovi processi in stato stazionario, verifica quelli già
esistenti e li ottimizza
21
CC-DYNAMICS progetta e verifica processi in continuo
CC-BATCH progetta e verifica una distillazione batch
CC-THERM progetta e verifica scambiatori di calore
CC-SAFETY progetta e verifica una rete di tubi, sistemi e componenti di sicurezza
CC-FLASH permette una regressione e un’analisi delle proprietà fisiche e delle fasi di
equilibrio
I diversi moduli hanno degli algoritmi che permettono di arrivare a convergenza con
tempi di calcolo ridotti.
Chemcad è caratterizzato da un’interfaccia abbastanza semplice con una grande
schermata bianca al centro e vari riquadri ai lati.
L’area al centro è chiamata workspace, nella quale si possono costruire le varie
apparecchiature, definire le correnti, vedere i grafici e fare le simulazioni.
Con chemcad si ha la possibilità di fare simulazioni di diverse apparecchiature
tipiche dell’ingegneria chimica.
22
SHORTCUT COLUMN
Per la simulazione di una semplice colonna di distillazione in chemcad c’è il modulo
SHORTCUT COLUMN. Questo modula usa il metodo Fenske-Underwood-Gilliland per
simulare una semplice colonna di distillazione, con un’alimentazione e due prodotti
(il distillato e il residuo).
La posizione del piatto dell’alimentazione è calcolata attraverso le equazioni di
Fenske o di Kirkbride. Inoltre usa l’equazione di Underwood per il riflusso minimo,
quella di Fenske per il numero di stadi minimo e poi la relazione di Gilliland. Un’altra
23
opzione è di far variare R/R min per vedere i suoi effetti sulla prestazione della
colonna.
Il metodo di distillazione short cut non può essere usato per il progetto e fornisce
risultati errati in sistemi con azeotropi.
È consigliabile utilizzare altri moduli più rigorosi come la tower, la tower plus o la
scds per controllare i risultati dello short cut.
Per avere la simulazione del progetto o della verifica di una colonna di distillazione
in chemcad devono essere assegnate delle specifiche.
Si forniscono i dati dell’alimentazione, cioè la pressione, la temperatura e le
composizioni.
Una volta caratterizzata l’alimentazione si passa alla colonna.
Ci sono tre opzioni di scelta della simulazione:
1) La verifica con il metodo F.U.G.
2) Progetto con il metodo F.U.G. con l’equazione di Fenske per il piatto di
alimentazione
3) Progetto con il metodo F.U.G. con l’equazione di Kirkbride per il piatto di
alimentazione.
24
Si deve specificare se il condensatore in testa è totale, e quindi il distillato sarà
liquido, o parziale.
Nel caso di progetto si devono specificare la pressione e le perdite di carico lungo la
colonna, altrimenti fissa quella dell’alimentazione, il rapporto di riflusso, i
componenti chiave e la loro frazione nel distillato.
Con queste specifiche si possono calcolare il calore al ribollitore e quello al
condensatore, il numero minimo di stadi, lo stadio dell’alimentazione, il rapporto di
riflusso minimo e il numero di piatti.
Nel caso di verifica sono richiesti la pressione e le perdite di carico lungo la colonna
come nel progetto, il numero di stadi, il rapporto di riflusso, i due componenti
chiave e la frazione del componente chiave più pesante nel distillato.
La frazione del componente più leggero se non è inserito il sistema lo considera
come se fosse uguale a 0,95, in quanto questo è il valore dal quale parte l’iterazione.
Si calcolano così il calore al ribollitore e al condensatore, il rapporto di riflusso
minimo, la frazione del componente chiave leggero e lo stadio dell’alimentazione.
I gradi di libertà in una colonna di distillazione con condensatore totale sono 2N + C
+ 9. Vediamo ora come il programma chemcad li satura.
25
C+2 specifiche
dell’alimentazione
2N+ 3 (T, P
degli N stadi, T
e P del
condensatore
e P del
separatore)
1
2
1
26
TOWER COLUMN
La tower è un modulo rigoroso che simula equilibri multistadio liquido vapore, tra i
quali colonne di distillazione, di assorbimento e stripping. Questa offre una grande
varietà di specifiche che la rendono molto flessibile all’uso.
Gli stadi della colonna sono numerati dall’alto in basso, il ribollitore e il
condensatore sono considerati anch’essi stadi di equilibrio.
Anche in questa simulazione si deve caratterizzare l’alimentazione, specificando la
temperatura, la pressione e le composizioni.
Nella tabella delle caratteristiche generali si deve specificare:
Se il condensatore in testa alla colonna è totale o parziale. Nel caso sia totale,
occorre fissare la temperatura di sottoraffreddamento.
La pressione in testa che deve essere inserita altrimenti, è considerata quella
dell’alimentazione; Inoltre vanno impostate le perdite di carico lungo la colonna,
fissando così le pressioni degli stadi.
Il numero degli stadi
Il piatto dell’alimentazione
Inoltre si possono fissare la pressione del distillato e del riflusso, le perdite di carico
del condensatore e la pressione del residuo.
27
Nella tabella delle specifiche si possono determinare le caratteristiche relative al
condensatore, che influenzano quindi il distillato, e al ribollitore, che influenzano il
residuo.
Per il condensatore ci sono diverse opzioni tra le quali scegliere. Alcune di queste
sono:
1)
2)
3)
4)
5)
6)
7)
Il calore al condensatore
Il rapporto di riflusso
La temperatura del distillato
La portata molare o ponderale di un componente
La portata del distillato
La frazione molare di un componente
Il recupero di un componente
Alcune opzioni per il ribollitore sono:
1)
2)
3)
4)
5)
6)
7)
Il calore al ribollitore
La temperatura del residuo
La portata molare del residuo
Il recupero
La frazione molare o ponderale di un componente
Il rapporto del vapore sul residuo
La portata di un componente
In definitiva specificando due tra queste, una per il distillato e una per il residuo, il
sistema è chiuso e il programma procede con la simulazione.
Vediamo come si saturano i gradi di libertà di una colonna con un condensatore
totale nella tower.
28
2N + 3
1
1
1
1
29
4. Distillazione azeotropica
4.1 Azeotropo
Azeotropo deriva dal greco che tradotta vuol dire “bollire immutato”, che significa
che il vapore emesso ha la stessa composizione del liquido.
Per classificare le diverse miscele azeotropiche Lecat (1918) esaminò le loro
deviazioni dalla legge di Raoult.
Per un sistema multicomponente liquido-vapore, la costante di equilibrio per la
specie i è definita da:
Il grado di non idealità è espresso dalla deviazione dall’unità del coefficiente di
attività γ per la fase liquida e dal coefficiente di fugacità per la fase vapore. La è
la fugacità del liquido puro. A basse pressioni si possono considerare uguali ad
uno e
quindi:
Dove
è la pressione di saturazione del componente i alla temperatura T.
Un azeotropo di massimo (alto bollente) si presenta per deviazioni negative della
legge di Raoult (
.
Un azeotropo di minimo, invece, si presenta per deviazioni positive della legge di
Raoult (
.
Per deviazioni sufficientemente grandi
si può verificare una scissione di
fase e si forma un azeotropo eterogeneo di minimo con una fase vapore in equilibrio
con due liquide. Un azeotropo eterogeneo si verifica quando la zona liquido-vapore
si sovrappone con quella liquido-liquido.
Per un azeotropo omogeneo, quando x1=x1, azeo=y1, la miscela bolle a questa
composizione.
30
Per un azeotropo eterogeneo, quando la composizione del liquido è x1=x1,azeo=y1 la
miscela bolle a questa composizione, ma le tre fasi coesistenti hanno composizioni
distinte.
T
P costante
P costante
y1
V
L
x1
x1
Diagrammi di equilibrio di un azeotropo di minimo
T
y1
P costante
P costante
x1
x1
Diagrammi di equilibrio di un azeotropo di massimo
T
T
V
V
L
L
L-L
L-L
x1
x1
Diagrammi di equilibrio per un azeotropo omogeneo e un azeotropo eterogeneo
In un punto azeotropico, le costanti di equilibrio per tutte le specie sono unitarie.
Quindi con una semplice distillazione non si ha separazione, ed è per questo che un
azeotropo è chiamato punto stazionario o fisso.
31
La semplicità di una separazione può essere misurata attraverso il valore della
volatilità relativa di due componenti. Più questa è lontana dall’unità e più la
separazione è facile da ottenere. Nella composizione azeotropica la volatilità è pari a
uno e quindi un azeotropo non può essere separato attraverso una semplice
distillazione.
4.2 Processi di separazione per miscele azeotropiche
Ci sono vari metodi per separare miscele liquide con uno o più azeotropi omogenei.
I metodi di distillazione sono i più utilizzati, o attraverso una variazione di pressione
o con l’aggiunta di un altro componente nel sistema, chiamato trascinatore, che
altera l’equilibrio del sistema. Altre tecniche di separazione, come la separazione
attraverso una membrana, sono di solito combinate con la distillazione.
Pressure-swing
I cambiamenti di pressione possono avere grandi effetti nell’equilibrio di miscele
azeotropiche così da rendere possibile la separazione con una semplice distillazione.
Incrementando o diminuendo la pressione operativa nelle singole colonne si
possono muovere i confini di distillazione nello spazio delle composizioni. Per alcune
miscele il cambiamento di pressione può cambiare in maniera significativa la
composizione azeotropica così da permettere la separazione.
D2
D1
T
B2
Alta pressione P2
F0
F1
P2
P1
F2
Bassa pressione P1
B1
P1<P2
B1
B
D1=F2
F0
F1
D2
B2
A
L’alimentazione della prima colonna, quella a bassa pressione, ha una composizione
32
F0. Con quest’alimentazione si può ottenere al massimo come residuo il componente
A puro, e come distillato l’azeotropo. Il distillato della prima colonna è mandato alla
seconda, a pressione più alta, dove come si vede dalla figura, la composizione
azeotropica è cambiata notevolmente. Grazie a questo cambiamento, in questa
colonna ora è possibile ottenere il componente B puro come residuo e l’azeotropo
come distillato, che viene ricircolato nella prima colonna.
Distillazione con aggiunta di un trascinatore
Se la distillazione con pressure-swing non può essere usata (perché la composizione
azeotropica è insensibile alla pressione o perché la pressione richiesta può
deteriorare le specie presenti), si possono considerare altri metodi per separare
azeotropi binari attraverso la distillazione:
 Distillazione azeotropica omogenea
 Distillazione azeotropica eterogenea
 Distillazione reattiva
 Distillazione con aggiunta dei sali
Tutte queste tecniche coinvolgono l’aggiunta di un terzo componente, ma l’effetto
del trascinatore dipende dal tipo di distillazione considerata. Può cambiare la
volatilità relativa dei costituenti dell’azeotropo senza produrre una separazione di
fase liquido-liquido (distillazione azeotropica omogenea); Può cambiare la volatilità
relativa producendo una separazione di fase liquido-liquido (distillazione
eterogenea); Può reagire con uno dei costituenti dell’azeotropo (distillazione
reattiva); Può dissociare ionicamente e cambiare la composizione azeotropica.
Distillazione azeotropica omogenea:
 Il trascinatore è completamente miscibile con i componenti della miscela
iniziale. Può, inoltre formare altri azeotropi, sia binari sia ternari, con gli stessi.
 La distillazione viene eseguita in classiche colonne.
Distillazione azeotropica eterogenea
 L’azeotropo presente nella miscela è eterogeneo.
 La distillazione viene eseguita nella colonna in combinazione di un sistema di
separazione meccanica, per esempio un decantatore.
33
La distillazione eterogenea è spesso preferita perché può essere economicamente
favorevole, ma ha un inconveniente: la separazione di fase può avvenire nella
colonna portando a una grande perdita di efficienza.
La distillazione omogenea è un metodo economicamente attrattivo per separare
miscele azeotropiche.
Dato un azeotropo binario che si vuole separare in due componenti puri, il progetto
della sequenza della distillazione è solitamente composto da due step: prima si
vagliano i potenziali trascinatori e poi si sceglie la sequenza di separazione per il
trascinatore scelto.
La scelta del terzo componente è il punto critico del progetto, poiché le colonne di
distillazione azeotropica omogenea possono comportarsi in maniera molto diversa
dalle semplici colonne di distillazione. Tra le maggiori differenze ci sono:
 Aumentando il riflusso in una data colonna non sempre si riesce ad
aumentare la separazione. Infatti, in alcuni casi non c’è affatto separazione a
riflusso infinito.
 Le
composizioni dei
prodotti dipendono
dalla
composizione
dell’alimentazione e dalla sua posizione relativa ai limiti della linea di
distillazione.
 A volte la separazione è fattibile ma né la sequenza diretta né quella indiretta
sono possibili.
 Ci sono rari casi in cui si può recuperare l’intermedio ma non il componente
leggero come distillato puro. oppure si può recuperarlo come residuo puro
ma non il componente pesante.
4.3 Caratteristiche particolari in una colonna di distillazione
azeotropica omogenea
Solitamente la separazione richiede la presenza di due colonne di distillazione:
La prima produce un costituente dell’azeotropo come prodotto puro, mentre l’altro
prodotto contiene il trascinatore e l’altro componente dell’azeotropo.
34
La seconda colonna invece separa il trascinatore e l’altro componente. Solitamente
poi il trascinatore viene rimandato con un riciclo alla prima colonna.
Una possibile configurazione è riportato nella seguente figura.
L
I
Trascinatore
Ricircolo del
trascinatore
Il trascinatore scelto di solito è il più alto bollente, per azeotropi di minimo. Il basso
bollente, in questa configurazione, è recuperato come distillato nella prima colonna
mentre l’intermedio nella seconda. Questa è una possibile configurazione ma ce ne
sono molte altre.
Riflusso infinito non implica separazione massima .
La prima caratteristica differente della distillazione azeotropica rispetto alla
semplice distillazione è che aumentando il riflusso, a volte, il grado della separazione
diminuisce. Questo non avviene mai nella semplice distillazione, infatti, il grado di
separazione è una funzione crescente del riflusso e la separazione massima, per un
numero fissato di piatti, si ottiene con riflusso infinito.
Per bassi valori del rapporto di riflusso, aumentandolo si migliora la separazione
anche nella distillazione azeotropica, mentre per alti valori dello stesso può
peggiorare. Questo comportamento può essere spiegato dal fatto che l’aumento del
riflusso comporta due effetti competitivi e l’importanza di questi effetti dipende dal
punto operativo. Aumentando il riflusso migliora la separazione lungo la colonna
(effetto positivo), contemporaneamente il trascinatore viene diluito diminuendo la
35
volatilità relativa dei due componenti dell’azeotropo e quindi la separazione
peggiora (effetto negativo).
Aumentando il numero di piatti può peggiorare la separazione .
Un'altra caratteristica differente dalla distillazione semplice descritta da Andersen
(1989) è il fatto che in alcuni casi, incontrando le stesse specifiche con un numero
più grande di piatti richiede flussi interni più grandi e le purezze del residuo e del
distillato diminuiscono.
Separazione diretta o indiretta.
La distillazione azeotropica differisce dalla semplice distillazione anche per l’ordine
nel quale si possono rimuovere i vari componenti.
Considerando una miscela ternaria senza azeotropi contenente un componente
leggero L, un intermedio I ed un pesante H. Se si vogliono separare i tre componenti
puri con due colonne si hanno le seguenti alternative:
Nella sequenza diretta L è recuperato come distillato puro nella prima colonna. Il
residuo, che contiene il pesante e l’intermedio è separato nella seconda colonna in I
(distillato) e H (residuo).
Nella sequenza indiretta H è recuperato puro come residuo nella prima colonna. Il
distillato, che contiene sia L che I è diviso nella seconda colonna in L (distillato) e in I
(residuo).
L
I
Sequenza diretta
L
I
L/I/H
H
I/H
36
H
Sequenza indiretta
L
L/I
L
L/I/H
I
H
I
H
Nel caso della semplice distillazione l’ordine di volatilità indica l’ordine nel quale si
possono rimuovere i vari componenti. Gli unici componenti che si possono separare
nella prima colonna sono il più volatile e il meno volatile. Non si può ottenere in
alcun modo l’intermedio puro né come distillato né come residuo da una singola
colonna.
Nella distillazione azeotropica omogenea questa regola viene violata. Ci sono casi,
dove né la separazione diretta né quella indiretta sono possibili, ma la separazione è
possibile perché si può recuperare il componente intermedio o nel distillato o nel
residuo.
I
L
L
H
Composizione
azeotropica
I
H
H
37
4.4 Scelta del trascinatore con aiuto delle RCM
Il risultato di una distillazione azeotropica dipende in gran parte dalla scelta del
trascinatore. Nonostante questo qualche tempo fa era scelto attraverso una
procedura per tentativi e attraverso dati sperimentali.
Si esaminano regole semplici utilizzando le mappe delle linee di distillazione (linee
operative a riflusso totale), che si preferiscono alle curve residue (che sono
un’approssimazione di quelle di distillazione), per esaminare i possibili trascinatori.
Nella distillazione azeotropica, a differenza di quella semplice, le composizioni delle
correnti prodotte dipendono dalla composizione dell’alimentazione e dalla sua
posizione rispetto ai confini di distillazione.
Quando si sceglie un trascinatore ciò che è importante è la struttura delle mappe
delle curve residue e delle linee di distillazione che sono associate alle miscele che la
coinvolgono. Bisogna tenere presente che le curve residue non possono attraversare
i confini di distillazione.
Pertanto, alcuni ricercatori (Van Dongen Doherty (1985) e Stichlmair (1989) hanno
avanzato l'ipotesi, in prima approssimazione, che le composizioni delle colonne di
distillazione che operano a riflusso finito non possono appartenere a regioni diverse
di distillazione ovvero attraversare confini di distillazione dette anche separatrici.
Sulla base di ciò si assume che la retta di lavoro, cioè la linea del bilancio di materia
globale, che collega le composizioni del distillato, alimentazione e residuo, non deve
attraversare il confine di distillazione. Doherty e Caldarola (1985), sulla base di
questa premessa, hanno proposto che un buon trascinatore è un composto che non
produce un confine di distillazione tra le specie che devono essere separate.
Van Dongen, Doherty e Levy (1985) hanno osservato che quando il confine di
distillazione non è lineare il profilo della composizione per una distillazione
omogenea può attraversare il lato convesso e quindi la teoria della scelta del
trascinatore di Doherty e Caldarola è conservativa.
Stichlmair (1989) ha proposto una strategia alternativa, basata sul concetto che una
miscela azeotropica omogenea può essere separata in una specie quasi pura solo
quando una curva residua collega i prodotti desiderati. Per raggiungere
quest’obiettivo ha osservato che per un azeotropo binario alto bollente, il
trascinatore deve essere anch’esso una specie alto bollente o formare un nuovo
38
azeotropo alto bollente. Allo stesso modo, per azeotropi binari basso bollenti il
trascinatore dovrebbe anch’esso essere una specie basso bollente o formare un
nuovo azeotropo basso bollente.
Nel caso di un azeotropo binario basso bollente sono state proposte anche altre
strategie per la scelta del trascinatore da diversi autori:
 Benedict e Rubin (1945): un componente che è più alto bollente dei
costituenti l’azeotropo e che non formi altri azeotropi.
 Hoffman (1964): un componente che è intermedio tra i due costituenti
l’azeotropo e che non formi altri azeotropi.
Laroche (1992) ha fatto un’analisi critica di questi criteri e ha discusso il loro impatto
nel progetto di torri azeotropiche.
Inoltre, Stichlmair e Herguijuela (1992) assumendo i confini di distillazione curvi,
hanno presentato delle regole per la selezione del trascinatore.
Nel caso di azeotropo bassobollente il trascinatore dovrebbe essere:
 Bassobollente (più basso dell’azeotropo)
 Intermedio che forma un azeotropo bassobollente con la specie bassobollente
 Altobollente che forma azeotropi di minimo con entrambe le specie. Almeno
uno dei nuovi azeotropi di minimo ha una temperatura di ebollizione più
bassa rispetto all’azeotropo originale
Nel caso di azeotropo altobollente il trascinatore dovrebbe essere:
 Bassobollente (più alto dell’azeotropo)
 Intermedio che forma un azeotropo di minimo con la specie altobollente
 Altobollente che forma un azeotropo di minimo con entrambe le specie.
Almeno uno dei nuovi azeotropi di massimo ha una temperatura di ebollizione
più alta dell’azeotropo iniziale.
39
4.5 Analisi di fattibilità
Composizioni dei prodotti a riflusso infinito
Nel caso della distillazione in generale il riflusso totale implica che la separazione è
massima. Studiando la colonna a riflusso infinito si possono derivare informazioni
molto utili, come il numero minimo di piatti per una desiderata separazione.
La situazione è differente nella distillazione azeotropica, dove il riflusso totale non
sempre implica separazione massima. Non si può calcolare il numero minimo di
piatti esaminando il caso di riflusso totale, perché la separazione può essere
peggiore del caso di un riflusso minore. In particolare le separazioni impossibili a
riflusso infinito possono essere realizzabili a riflusso finito. Tuttavia è conveniente
studiare questo caso perché la separazione possibile a riflusso infinito è possibile
anche ad alto riflusso, quindi la separabilità a riflusso totale implica separabilità
anche a riflusso finito. Inoltre, questo caso ha il vantaggio della semplicità per la
trattazione teorica.
Una volta scelto il trascinatore l’attenzione è rivolta alla sequenza delle torri di
distillazione.
Nel considerare le sequenze possibili delle colonne è importante considerare le
possibili composizioni del distillato e del residuo. Molti autori hanno svolto studi per
determinare le possibili composizioni dei prodotti avendo la composizione
dell’alimentazione.
I bilanci di materia: globale e dei componenti, impongono che le composizioni
dell’alimentazione, del distillato e del residuo giacciano su uno stesso segmento, con
le composizioni del distillato e del residuo rappresentati dai punti finali di tale
segmento e giacenti sulla stessa curva di distillazione.
H
F
L
I
40
Per impostare i confini possibili per la composizione del distillato e del residuo si fa
passare la linea di distillazione attraverso la composizione dell’alimentazione.
H
B
F
L
I
D
Tutte le composizioni all’interno della regione limitata dalla linea di distillazione e
dall’asse HL vengono scartate.
Una linea di bilancio di materia viene fatta passare attraverso il vertice L, distillato
puro, F e B. Una seconda linea di bilancio viene fatta passare da H, residuo puro, D e
F.
Questi bilanci di massa forniscono i limiti rimanenti per le composizioni del distillato
e del residuo, come mostrato in figura, dove le composizioni fattibili sono nelle zone
rispettivamente di LFDL e HFBH.
Le curve di distillazione sono linee operative a riflusso totale, mentre le curve
residue sono una loro approssimazione, tuttavia molti autori utilizzano le mappe
delle curve residue. Dopo aver scelto il trascinatore, le regioni delle composizioni del
distillato e del residuo sono selezionate. Si considera un sistema ternario con un
azeotropo binario tra la specie pesante e intermedia (H I).
L
F1
H
F2
K
41
I
Utilizzando un trascinatore bassobollente L, le due zone sono separate da un confine
di distillazione lineare che collega l’azeotropo K e il componente L.
In figura sono presenti le due alimentazioni F1 e F2 localizzate nelle due regioni di
distillazione (HKLH e IKLI). Si nota che ogni linea di bilancio di materia è confinata
nella regione di distillazione in cui si trova l’alimentazione.
Nella regione HKLH una colonna può essere progettata per recuperare H come
prodotto di fondo colonna o L come distillato. Allo stesso modo, per le alimentazioni
nella regione IKLI, i componenti L e I si concentrano nel distillato e nel recupero
rispettivamente.
In determinate circostanze il distillato e il residuo possono trovarsi in regioni di
distillazione differenti da quella in cui risiede l’alimentazione.
L D
K
F
H
B
I
Questo sistema non ha un confine di distillazione e tutte le linee partono
dall’azeotropo di minimo K e terminano in H che è il componente più pesante.
Per l’alimentazione F può essere tracciata una linea di bilancio di materia che passa
per il vertice puro L. Nonostante il componente L non è il punto finale della linea di
distillazione KLIH può essere recuperato nel distillato.
Le regioni della composizione sono illustrate nella figura.
42
L
D
K
F
B
I
H
Si nota dalla figura che la specie pura I non può essere recuperata con questa
composizione dell’alimentazione.
Per illustrare l’attraversamento di un confine di distillazione la figura seguente
mostra una miscela ternaria con un azeotropo di minimo H-I in K. Ci sono due
regioni di distillazione, HKLH e IKLI che sono rispettivamente concava e convessa.
L
D4
D
D2
D1
F1
a)
B1
b)
B
B2
F2
H
I
K
B4
B3
Una linea di bilancio globale di materia si può far passare attraverso F1, la quale non
costituisce solo una corda della linea di distillazione a) (B1D1) nella regione convessa
ma anche della linea di distillazione b) (B3D2) sull’altro lato del confine di
distillazione.
43
L’alimentazione, può avere un distillato D1 e un prodotto di fondo B1, entrambi
situati nella regione di distillazione in cui F risiede. Può, però, anche produrre un
distillato D2, con B2 o B3 come residuo sull’altro lato del confine di distillazione (curva
b).
In questa particolare situazione, le tre composizioni non giacciono sulla stessa
regione di distillazione con F1, e quindi il confine di distillazione può essere
attraversato.
La linea di bilancio di materia globale che attraversa F2, localizzata nella zona
concava IKLI, forma due corde alla curva di distillazione a (BD) e alla b (B4D4). Si nota
che il distillato e il residuo, che sono localizzati su a, non collegano l’alimentazione
F2; Quindi in tal caso il confine di distillazione non può essere attraversato.
In generale, poiché la composizione dell’alimentazione deve essere connessa con
quella del distillato e del residuo, i confini di distillazione possono essere attraversati
solo dal lato convesso al concavo. Ne consegue che se il confine di distillazione è
lineare non può essere attraversato.
Delimitazione a riflusso finito
Per miscele binarie, la più alta purezza è realizzata a riflusso totale, mentre per le
miscele azeotropiche multicomponente Van Dogen e Doherty (1985) e Laroche
(1992) hanno mostrato che la migliore separazione può non essere raggiunta a
riflusso totale.
Wahnschaff (1992) e Fidkowsky (1993) hanno proposto metodologie per esaminare
meglio le regioni delle composizioni fattibili dei prodotti a riflusso finito. Fidkowsky
ha introdotto il limite di distillazione, che limita proprio le regioni di composizione
del prodotto. Wahnschaff ha usato la traiettoria pinch-point dell’alimentazione.
Traiettoria pinch-point
Nell’esaminare i profili della composizione del liquido nella sezione di rettifica di una
colonna di distillazione con una singola alimentazione, dove la retta di lavoro è data
da:
44
è stato osservato che l’entità del distillato (e quindi del riflusso) determina la
differenza tra le composizioni del vapore in ingresso yn e del liquido in uscita xn-1.
A riflusso finito, il profilo di rettifica non può essere approssimato con la curva
residua dal lato concavo.
La tie line, che collega la composizione del distillato yD alla composizione xD,
all’equilibrio, è tangente alla curva residua r1.
R1
R2
R3
R4
R5
R6
yD
y1
b2
y2
xD
b1
x1
x2
a2
a1
Inoltre l’equazione della retta di lavoro richiede che la composizione del vapore, che
lascia il piatto 1, y1 si trova su questa linea tratteggiata, con la quantità di distillato D
determinando la posizione di y1 rispetto a yD. A riflusso totale y1 = xD e la
composizione del liquido x1 è posizionata sulla curva che collega a1 e b1, 1.
Allo stesso modo, la composizione del vapore che lascia il piatto 2, y2, si trova sulla
linea tratteggiata che collega x1 e yD, e la composizione del liquido x2, all’equilibrio
con y2, si trova su r5. Così i profili di rettifica sono delimitati dai cosiddetti punti di
pinch del distillato (b, b1, b2, …) e dalla curva che collega xD, a, x1, a2, x2,...
Quest’ultima corrisponde al limite di funzionamento a riflusso totale.
45
Dalla figura si nota che quando x1 = b1 e x2 = b2 la linea operativa punteggiata e
quella tratteggiata diventano collineari. In questa circostanza xn-1 e yn si avvicinano
all’equilibrio e la forza spingente diventa infinitesima. Questo è equivalente a
operare con un numero infinito di piatti al minimo rapporto di riflusso e quindi i
punti b1, …, bn sono i pinch point del distillato. Questi sono disegnati sulla curva di
pinch del distillato, che è costruita posizionando le tangenti alla curva residua che
passano attraverso la composizione del distillato xD.
xd
Curve
residue
Curva di
pinch del
distillato
Per sistemi con confini di distillazione ci sono curve di pinch distinte per ogni
regione.
Limite di distillazione e linea di transizione
I profili di stripping e di rettifica inizialmente sono esaminati per la separazione
diretta e indiretta di una miscela ternaria L I H.
Profili per separazione diretta a) e indiretta b)
I
I
Profilo di
stripping
Profilo di
rettifica
xs
B
Profilo di
rettifica
D
Profilo di
stripping
xr
F
F
H
L=D
L
H=B
b)
a)
Per lo split diretto L-IH il profilo di stripping incontra il profilo di rettifica in xs e
quindi c’è un numero infinito di stadi nella sezione di stripping. Per lo split indiretto
46
LI-H il profilo di rettifica incontra quello di stripping in xr e quindi la sezione di
rettifica ha un numero infinito di stadi.
Doherty e Levi (1986) hanno mostrato che c’è un unico passaggio tra lo split diretto
e indiretto. Questo è denominato split di transizione (LI-IH).
I
Profilo di
rettifica
Profilo di
stripping
B
D
F
Linea di
transizione
L
H
Qui un infinito numero di stadi esistono in entrambe le sezioni e i punti di pinch dei
profili coincidono nello stadio di alimentazione:
Entrambe le linee si uniscono al bilancio di materia unendo xD, Zf e xB.
Quest’equazione implica che la linea di transizione si unisce alla tie line delle
composizioni di pinch dell’alimentazione xf e yf.
Limiti delle composizioni dei prodotti
I limiti delle composizioni sono gli stessi degli studi a riflusso totale. In più altri limiti
sono localizzati trovando le composizioni associate a due casi limite. Il primo quando
la composizione del distillato è uguale a quella dell’alimentazione (torre di
stripping), il secondo quando la composizione del residuo è uguale a quella
dell’alimentazione (torre di arricchimento). Il primo implica che la composizione del
prodotto di fondo è delimitata dalla curva di pinch dell’alimentazione liquida. Il
secondo che la composizione del distillato è delimitata dalla curva di pinch-point
47
dell’alimentazione vapore, passando attraverso la composizione del vapore in
equilibrio con la composizione dell’alimentazione, yF.
Questi limiti danno le regioni delle composizioni di prodotto fattibile.
4.6 Sequenza di colonne
Nel caso di miscele ideali non ci sono molte difficoltà nel selezionare le specie che si
concentrano nel distillato e nel residuo. Tuttavia la separazione ideale è poco
praticata.
Doherty e Caldarola (1985) hanno usato le curve residue per la sequenza di colonne
per la distillazione azeotropica omogenea. Come già ricordato prima, per stabilire i
limiti tra le regioni di distillazione devono essere usate le linee di distillazione e non
le curve residue.
La differenza principale tra la progettazione per miscele ideali e non ideali è che la
distribuzione del prodotto nella distillazione azeotropica dipende dalla regione in cui
giace la composizione dell’alimentazione. Tuttavia, quando possono essere usate le
mappe delle curve residue e le linee di distillazione le regioni per le composizioni del
distillato e del residuo sono ben definite e la sequenza delle colonne è
notevolmente semplificata. Si può dimostrare ciò considerando una miscela
azeotropica, in cui il binario è di minimo, e utilizzando un trascinatore di volatilità
intermedia.
Questa miscela non ha un confine di distillazione.
I
B1
D1
F1
H
F
48
L
Di seguito ci sono due sequenze possibili per produrre H e L quasi puri.
D1
F
L
F1
H
I
L
F
I
F1
B1
H
49
Molti trascinatori possono introdurre nuovi azeotropi e formano uno o più confini di
distillazione. Nella costruzione delle sequenze delle colonne si assume che i confini
di distillazione sono rettilinei e quindi si trascura l’effetto della loro curvatura.
Le composizioni del distillato e del residuo sono confinate nella regione dove risiede
l’alimentazione e si deve trovare il modo per attraversare questi confini per
raggiungere le specifiche richieste.
Ci sono due alternative per fare questo: utilizzare un trascinatore che non produce
un confine di distillazione, utilizzare un trascinatore che produce uno
smescolamento, come nella distillazione eterogenea.
Un’altra alternativa si può introdurre un ricircolo per attraversare i confini di
distillazione.
Si considera ora un trascinatore che forma un azeotropo con il componente H e che
forma un confine di distillazione.
Per questa miscela il grafico ternario è il seguente.
L
D3
D2=F3
B3
F2
D1
F1
I
H
F
In una possibile sequenza, l’alimentazione è mescolata con l’azeotropo H-L per
produrre una nuova alimentazione per la colonna C1. Il componente più pesante è
recuperato come residuo nella prima colonna e il distillato D1 si trova vicino al
confine di distillazione DE. Il distillato D1 è miscelato con il residuo B3 della terza
50
colonna così da avere una composizione F2, alimentazione della seconda colonna,
localizzata nella seconda regione di distillazione.
La seconda colonna C2 produce I come residuo e come distillato D2. D2 è separato
nella terza colonna nel residuo B3 e nel distillato D3 (azeotropo H-L).
Questa configurazione riesce ad ottenere H e I puri come prodotti.
D1
F
F1
D3
D2
F2
C1
C2
H
C3
I
B3
Doherty e Caldarola(1985) hanno mostrato che questa sequenza è impossibile.
La prima colonna producendo H puro si può rappresentare schematicamente come:
D3
F
D1
H=85
I=15
H=85
51
Questo schema si può ulteriormente semplificare:
D3
D1
I
Si osserva che D3, D1 e I devono essere connessi da un segmento, essendo legati da
un bilancio di materia. Il bilancio di materia globale per la prima colonna collega D1,
F1 e H con un segmento. Il distillato deve situarsi nella prima regione di distillazione.
Il distillato non può attraversare il confine di distillazione e di conseguenza non è
possibile collocare D1 nel segmento che collega D3 e I.
L
L
D3
D1
D3
H
I
H
I
La situazione non migliora spostando D3 verso il vertice H, come mostrato nella
figura precedente. Facendo così è possibile progettare la prima colonna
correttamente poichè questo porta D1 nella prima regione ed è collegato con D3 e I.
Tuttavia la terza colonna non può produrre quel D3 perché il suo profilo di
concentrazione deve stare nella seconda regione.
Doherty e Caldarola hanno affermato che i confini lineari non possono essere
attraversati usando il metodo del ricircolo.
52
5. Curve residue e costruzione DRD
Introduzione
In questo capitolo sono descritte le caratteristiche principali delle curve residue,
molto utili nello studio della posizione dei confini di distillazione, di azeotropi e la
fattibilità di separazioni. Anche se rappresentano un’approssimazione le mappe
delle curve residue mostrano in maniera chiara l’infattibilità o le problematiche di
specifiche che causano fallimenti o difficoltà di convergenza nelle simulazioni.
Nella seconda parte del capitolo è illustrato un algoritmo per la costruzione di
diagrammi che rappresentano qualitativamente le regioni di distillazione in sistemi
ternari che presentano il fenomeno dell’azeotropia. Questi diagrammi si possono
costruire conoscendo le temperature di ebollizione dei componenti puri e degli
azeotropi.
L’algoritmo presentato di seguito è stato poi implementato nel linguaggio Justbasic.
5.1 Curve residue
La più semplice forma di distillazione è la distillazione batch in unico stadio.
Il vapore che si separa dal liquido sarà in equilibrio con lo stesso, e sarà più ricco del
componente più volatile. A mano a mano che la distillazione prosegue, il liquido
rimasto cambierà la sua composizione continuamente, e in particolare aumenterà la
frazione del componente più pesante, contemporaneamente aumenterà anche la
temperatura in maniera continua.
La traiettoria delle composizioni liquide che parte da quella iniziale della miscela è
chiamata curva residua.
L’insieme di tutte queste curve per una data miscela è chiamata mappa delle curve
residue.
Sono aggiunte delle frecce per indicare la direzione del tempo crescente, al quale
corrispondono quindi un incremento di temperatura e un abbassamento della
volatilità.
Se la miscela è ben mescolata all’interno dello stadio e la vaporizzazione è
abbastanza lenta, per permettere il raggiungimento dell’equilibrio termodinamico,
53
le curve residue contengono le stesse informazioni dei diagrammi di equilibrio della
miscela. In più sono rappresentate in modo da essere molto utili per la
comprensione del sistema di distillazione.
V, yi
L,xi
Facendo un bilancio microscopico di materia intorno al distillatore si ottiene:
Per i=1, ……, c
Trascurando il termine di ordine superiore si ottiene:
(1)
Dove al posto di
E al posto di
si può considerare un tempo adimensionale
si può sostituire la relazione di equilibrio
Le curve residue si ottengono integrando la 1.
Quando
si è in presenza di componenti puri o di azeotropi.
Si possono costruire mappe di curve residue di miscele con qualsiasi numero di
componenti, ma quelle che si possono rappresentare sono miscele con al massimo
quattro componenti.
In sistemi ternari le fasi liquide si rappresentano su diagrammi triangolari rettangoli
o equilateri. Per sistemi a quattro componenti si rappresentano con diagrammi
tridimensionali.
I vertici del triangolo, nel caso di miscele ternarie, rappresentano i composti puri. Gli
azeotropi binari si trovano sui lati e quelli ternari all’interno del triangolo.
54
In sistemi senza azeotropi si osserva che le curve partono sempre dal vertice, che
rappresenta il componente più volatile, viaggiano verso il composto intermedio in
termini di volatilità, e infine terminano sul più pesante. Ciò significa che non si può
mai ottenere il componente intermedio puro con una semplice distillazione.
La famiglia di curve che ha origine in una composizione e termina in un’altra
composizione definisce la regione di distillazione.
I sistemi senza azeotropi hanno solo una regione di distillazione. Per molti altri
sistemi però non tutte le curve residue partono e arrivano alle stesse composizioni,
quindi in questi ci sono diverse regioni di distillazione.
La curva residua che divide due regioni in cui le curve adiacenti o partono o arrivano
in diverse composizioni è chiamata separatrice o confine di distillazione.
All’interno di questi diagrammi i punti dai quali partono le curve residue
(componente più volatile o un azeotropo di minimo) sono detti punti instabili. I
punti nei quali arrivano invece si chiamano punti stabili (componente meno volatile
o un azeotropo di massimo). I punti dove arrivano e poi si allontanano da essi sono
chiamati punti di sella.
Il confine di distillazione parte o termina sempre dall’azeotropo di sella, ma mai dal
componente puro di sella.
Le curve residue sono indicative di molti aspetti del comportamento di colonne di
distillazione continue. Per sistemi con diverse regioni di distillazione i profili di
composizione sono costretti a stare in delle regioni specifiche.
Le curve residue si possono costruire o con dati di laboratorio o integrando
l'equazione (1) se sono disponibili le espressioni dei coefficienti di attività da
utilizzare nelle relazioni di equilibrio.
Le mappe delle curve residue sono molto utili per capire tutti i tipi di distillazione
batch e continua. Grazie a questo metodo si possono osservare subito la posizione
dei confini di distillazione, di azeotropi e la fattibilità di separazioni. Inoltre mostra in
maniera chiara l’infattibilità o le problematiche di specifiche che causano fallimenti
o difficoltà di convergenza nelle simulazioni.
55
I bilanci di materia sono rappresentati graficamente nei diagrammi triangolari da
segmenti di rette che collegano le composizioni. Si possono determinare le quantità
attraverso la regola della leva.
Le linee del bilancio di materia sono governate da due regole:
1) Le composizioni del residuo, del distillato e dell’alimentazione devono
appartenere alla stessa retta.
2) Il distillato e il residuo devono stare sulla stessa curva di distillazione o in
modo approssimato sulla stessa curva residua.
Per il sistema ternario pentano, esano, eptano la mappa delle curve residue è
relativamente semplice.
Le curve residue si possono rappresentare anche con diagrammi triangolari
equilateri.
56
Come si dimostra in seguito, le curve residue sono rappresentazioni del profilo della
composizione del liquido a riflusso totale.
Considerando l’approssimazione al piatto (n+1) di una colonna di distillazione:
2)
Sostituendo la 1 diventa:
(3)
Quando ∆τ è impostato ad uno, la 3 diventa:
(4)
Questa è l’equazione per la linea operativa di una colonna multistadio a riflusso
totale. A causa dell’approssimazione nella 3 le curve residue, che sono le soluzioni
della 1, approssimano il profilo della composizione del liquido a riflusso totale.
A riflusso finito, la linea operativa nella sezione di arricchimento è data dal bilancio
di materia sui n piatti in testa:
5)
Espandendo xN-1 intorno a xN usando la serie di Taylor:
57
6)
Dove ∆h=hN-1-hN=-1, la 5 diventa:
7)
A riflusso totale, con D=0 e VN=LN-1 diventa uguale alla 1.
L’espansione di Taylor è valida solo per ∆h che tende a zero, e quindi la soluzione
della 1 approssima le composizioni liquide a riflusso totale. Le soluzioni della 7, a
riflusso finito, si discostano ulteriormente dalle curve residue.
Curve di distillazione
Le linee di distillazione, nonostante siano simili alle curve residue, hanno delle sottili
differenze. A differenza delle curve residue, la linea di distillazione è la linea
operativa a riflusso totale, dove la 5 si riduce alla 4, con la composizione del liquido
in uscita dal piatto N, xN, identica alla composizione del vapore entrante al piatto N,
yN+1.
La regola delle fasi di Gibbs implica che in condizioni isoterme, o isobare, le
composizioni del vapore all’equilibrio sul piatto N+1 possono essere espresse come
una funzione delle composizioni del liquido.
(8)
Oppure:
(9)
Dove n è l’inverso di m. La linea di distillazione è il luogo delle composizioni del
liquido, x0, …, xN …, che soddisfano la 9.
Geometricamente i vettori che collegano xN e yN (tie lines) sono le corde della linea
di distillazione.
L’equazione 1 impone che i vettori tie lines, collegando la composizione del liquido x
e quella del vapore y, all’equilibrio, siano tangenti alle curve residue.
Poiché questi vettori tie lines devono anche essere corde della linea di distillazione,
le curve residue e le linee di distillazione devono intersecarsi alla composizione del
liquido x.
58
5.3 Costruzione del Diagramma delle Regioni di Distillazione:
DRD
Molte ricerche teoriche sono state condotte per studiare la distillazione delle
miscele multicomponenti reali che presentano fenomeno di azeotropia. In modo
particolare gli studi sono stati svolti da Doherty e Perkins (1978 a, b, 1979 a, 1982) e
da Van Dongen e Doherty (1984).
Altri (Gani e Cameron, 1992, Matsuyama e Nashimura, 1977; Petlyuk, 1975 a, b,
1977; Reshetov, 1983) hanno applicato il campo della topologia matematica alle
mappe delle curve residue.
Questi studi suggeriscono delle regole per la costruzione qualitativa delle mappe
delle curve residue con un numero minimo di dati senza il bisogno di informazioni
dettagliate del modello di equilibrio liquido vapore o misure sperimentali. Questi
dati sono le temperature di ebollizione dei componenti puri e degli azeotropi
(ovviamente nota la loro composizione) presenti nel sistema alla pressione fissata.
La possibilità di ottenere l'andamento qualitativo della mappa delle curve residue
deriva dall'applicazione delle seguenti proprietà delle curve residue:
a) Le curve residue non possono intersecarsi con altre curve residue o con se
stessi;
b) La temperatura di ebollizione cresce lungo una curva residua;
c) Punti singolari si verificano in corrispondenza di tutti i componenti puri e gli
azeotropi;
d) Un punto singolare è o un nodo stabile, o un nodo instabile oppure
rappresenta una sella.
I tre componenti puri sono generalmente indicati e riportati in ordine decrescente di
volatilità con:
 L = Leggero,
 I = Intermedio,
 H = Heavy ( pesante).
59
Inoltre, per convenienza si distinguono con la lettera N i nodi sia stabili che instabili,
dai punti singolari di tipo sella indicate con S. Successivamente i pedici 1, 2, e 3
caratterizzano se il punto singolare si riferisce ad un componente puro, ad un
azeotropo binario o ad un azeotropo ternario.
Quindi, si indicano con:
B: il numero totale di azeotropi Binari,
N1: il numero di componenti puri Nodo (sia stabili che instabili),
N2: il numero di azeotropi binari nodo,
N3: il numero azeotropi ternari nodo,
S1: il numero di componenti puri sella,
S2: il numero di azeotropi binari sella,
S3: il numero di azeotropi ternari sella.
In questi studi sono stati considerati sistemi con massimo, un solo azeotropo
ternario e un azeotropo binario per ogni lato del diagramma. Quindi per un massimo
di quattro azeotropi di cui tre binari.
Questi sistemi devono soddisfare le seguenti relazioni:
N1 + S1 = 3
N2 + S2 = B ≤ 3
N3 + S3 =1 oppure 0
N2 – S2 + N1 + 2 N3 – 2 S3 = 2
L'ultima equazione rappresenta il principio di conservazione topologica e permette
di calcolare il numero totale di azeotropi binari di sella S2 e quello totale di azeotropi
binari di nodo N2 , note la tipologia dei punti singolari puri e quello del ternario.
Una volta stabilità la tipologia dei punti singolare le seguenti regole risultano utili
per poter tracciare DRD:
60
a) Un punto di sella corrispondente ad un componente puro non ha connessioni
interne;
b) Un punto di sella ternario deve avere quattro connessioni;
c) La condizione necessaria affinché un azeotropo ternario sia di sella è
l'esistenza di due più alto-bollenti e due più basso-bollenti con cui possa
connettersi.
d) Un azeotropo ternario è un nodo se :
a. N1 + B < 4; oppure,
b. escludendo i componenti puri sella, l’ azeotropo ternario è il primo più
alto-bollente, o il secondo più alto-bollente, oppure è il primo più
basso-bollente o il secondo più basso bollente.
In base alle suddette regole, alcuni ricercatori hanno sviluppato e proposto (Foucher
et al 1991) un algoritmo che determina le connessioni tra i punti singolari delle
mappe residue. Questo offre una prima approssimazione per le mappe reali che nel
caso di confini di distillazione rettilinei risulta essere molto accurata.
Tuttavia, come riportato dagli stessi autori, in alcuni casi possono avvenire delle
indeterminazioni perché con le stesse temperature si possono avere più
configurazioni possibili delle mappe residue. In questo caso basterebbe calcolare in
modo rigoroso una sola curva residua con cui discernere il DRD corretto.
5.4 CLASSIFICAZIONE DRD
Matsuyama e Nishimura, J. Chem. Eng. Japan,10,181 (1977), stabilirono che per
sistemi ternari con al massimo, un azeotropo ternario e uno binario per lato, ci sono
125 possibili configurazioni delle DRDs.
Eric Peterson ha sviluppato una tabella in cui tutte le configurazioni sono classificate
in base al profilo di temperatura del sistema (vedi Perry 7° ed. fig. 13.59).
I tre componenti puri sono generalmente indicati e riportati in ordine decrescente di
volatilità con:
 L = Leggero,
61
 I = Intermedio,
 H = Heavy ( pesante).
Seguendo il profilo di temperatura ha assegnato dei numeri ad ogni posizione del
diagramma. Le posizioni 1, 3 ,5 sono i componenti puri ordinati per volatilità
decrescente. Le posizioni 2, 4, 6 sono gli azeotropi binari e 7 è l’azeotropo ternario. Il
numero corrispondente ad un azeotropo che non è presente viene cancellato.
Ad alcune DRDs possono corrispondere diversi profili di temperatura.
L,1
6
2
7
I,3
H,5
4
Ecco alcuni esempi di classificazione:
L
L
L
H
I
(46135)
H
I
(64135, 61435)
H
I
13725, 13752
)
Matsuyama e Nishimura (1977) proposero un’altra classificazione. In questo metodo
si posiziona il componente più volatile sul vertice in alto del triangolo, il pesante sul
vertice in basso a destra e l’intermedio in basso a sinistra. Si assegnano, poi, dei
numeri per caratterizzare la natura degli azeotropi binari presenti nel sistema. La
prima cifra si riferisce al binario di L-I, la seconda a quello di I-H e la terza a L-H.
Le possibili cifre sono:
62
0: non c’è azeotropo
1: Azeotropo di minimo nodo
2: Azeotropo di minimo sella
3: Azeotropo di massimo nodo
4: Azeotropo di massimo sella
Se c’è anche un azeotropo ternario le tre cifre sono seguite da una lettera tra:
m: Azeotropo di minimo
M: Azeotropo di massimo
S: Azeotropo intermedio
L
L
L
H
I
H
I
324-M
012
H
I
222 m
5.5 Struttura dell’algoritmo
L’algoritmo è costituito da diversi stadi.
1) Innanzitutto si devono conoscere le temperature di ebollizione dei composti puri
e degli azeotropi. Si dispongono i componenti puri sui vertici del triangolo,
mettendo il leggero nel vertice in alto, il pesante in quello in basso a destra e
l’intermedio in basso a sinistra. Si dispongono quindi gli azeotropi binari sui
vari lati del diagramma.
2) Si determina la natura dei componenti puri (nodi o selle) con le seguenti regole:
63
a. Un componente puro è una sella se uno dei componenti ( un suo
azeotropo , se presente, o un altro componente puro) ad esso adiacenti
ha una temperatura di ebollizione minore e l’altro ne ha una maggiore. In
questo caso non è necessario indagare le connessioni oltre a quelle lungo i
lati del triangolo.
b. Un componente puro è un nodo se le due specie ad esso adiacenti sono
entrambi più volatili o più pesanti. Nel primo caso il componente puro è
stabile. Qui non ci possono essere altri collegamenti con specie più altobollenti. Mentre è un nodo instabile se accade il contrario.
3) Si determina la natura dell’azeotropo ternario
c. La condizione necessaria per avere un azeotropo ternario di sella è
l’esistenza di due specie più alto-bollenti e due più basso-bollenti, con i
quali può essere collegato. Poiché, come è già stato detto prima, un
componente puro di sella non può essere connesso con altre specie, i
quattro collegamenti dell’azeotropo ternario di sella non possono essere
tracciati con un componente di sella puro.
Con queste regole è possibile determinare i casi in cui l’azeotropo ternario non può
essere di sella.
Quindi, un azeotropo ternario è un nodo se N1 + B < 4 (ci sono meno di quattro
possibili connessioni) e/o, escludendo i componenti puri sella, il ternario è il più alto,
il secondo più alto, il più basso, o il secondo più basso bollente.
4) Tracciare le connessioni con il ternario sella.
Se N1+B=6 c’è un’indeterminazione. Se non c’è indeterminazione il ternario è
collegato con tutti i binari e i componenti puri nodi.
Gli stadi che restano considerano solo sistemi senza ternari di sella.
5) Determinare il numero di nodi binari e selle quando non ci sono ternari di sella.
Il numero di nodi binari e di selle può essere calcolato con:
Con
e
64
6) Esaminare la consistenza dei dati.
Si conta prima il numero di azeotropi binari che sono o il più alto o il più basso
bollenti del sistema. La termodinamica richiede che almeno questi azeotropi siano
dei nodi (i binari più alto e basso bollenti).
Quindi, se N2 è più piccolo dei binari più pesanti e più leggeri, i dati sono
inconsistenti .
La consistenza dei dati di un sistema che non presenta azeotropo ternario di sella
viene verificata dalla relazione Bib = S2
Nel caso in cui S3 = 1 i dati sono inconsistenti se N1 + B = 6.
70°C
65°
C
75
90°C
100°C
80°C
Nella figura precedente, escludendo il componente di sella (che bolle a
70°C),l’azeotropo ternario è il secondo più basso bollente e quindi non può essere
una sella. Quindi deve essere per forza un nodo; con queste assunzioni il risultato
dell’equazione è N2= 0, ma il numero di nodi binari dovrebbe essere 1 (il binario che
bolle a 65°C è il più basso bollente del sistema); in definitiva i dati sono inconsistenti.
7) Indeterminazione
Ci possono essere indeterminazioni locali o globali. Ci può essere indeterminazione
locale quando N1=1 oppure N3=1 e ci può essere sia locale che globale se S3=1.
Nel caso in cui S3=0, la presenza di un’indeterminazione locale implica la presenza di
un nodo binario intermedio e di una sella binaria.
In un sistema ternario, che non presenta un azeotropo di sella ternario, non può
avvenire il fenomeno dell’indeterminazione quando tutti i binari intermedi sono
selle.
65
8) Collegare gli ultimi punti quando non c’è indeterminazione.
Qui di seguito sono indicate alcune proprietà utili per la costruzione delle mappe
residue.
1) Due azeotropi binari di sella non possono essere collegati tra loro. Formerebbero,
altrimenti, un anello che non è permesso, poiché le curve residue sono dirette verso
le temperature crescenti.
Pertanto, le selle binarie possono essere connesse solo con nodi o con selle ternarie.
2) Una sella binaria di minimo deve collegarsi con un nodo instabile o con una sella
ternaria che bolle ad una temperatura più bassa, e una sella binaria di massimo ad
un nodo stabile o ad un ternario di sella che bolle ad una temperatura più alta.
3) Un componente puro nodo e un nodo binario che sono vicini hanno diversa
stabilità.
4) Un nodo ternario può connettersi solo con una sella binaria.
Una curva residua che collega un nodo instabile ad uno stabile non deve essere
tracciata perché non è un confine di distillazione.
Quindi un componente puro nodo non può essere collegato con un nodo ternario,
ma solo con una sella binaria o ternaria.
5) Quando non c’è un ternario di sella, ci sono tanti confini di distillazione quanti
sono gli azeotropi binari di sella. Siccome si considerano sistemi in cui c’è al massimo
un solo ternario, la presenza di un nodo ternario esclude la presenza di un ternario
di sella.
66
6) In un sistema senza azeotropo di sella ternario, gli azeotropi binari intermedi (in
termini di volatilità) non possono essere tutti dei nodi.
Poiché le selle binarie sono tutte specie intermedie, il numero totale di azeotropi
intermedi è
.
Si può dimostrare la proprietà 6 o mostrando che quando Bib≠0 il valore di S2 non
può essere 0, poiché S2 = 0 implica che N2 = B ≥ Bib e tutti gli azeotropi intermedi
sono nodi, o mostrando che quando S2 = 0, Bib è necessariamente uguale a zero.
L’equazione topologica può essere scritta come
poiché N2 = B e
S3 = S2 = 0. Ci sono due possibili situazioni, una se N3=0 e l’altra se N3 =1.
Se il numero di nodi ternari è uguale a zero l’equazione topologica diventa
.
Se B =1 allora
. Questo significa che solo un componente estremo (in termini
di volatilità) può essere una specie pura, quindi l’altro deve essere un azeotropo
binario e Bib = 0.
Se B = 2 allora N1 = 0. Quindi il più alto bollente e il più basso bollente devono essere
i due binari e quindi Bib = 0.
Se B = 3 allora N1 < 0. Questo caso è impossibile.
Se il sistema presenta un nodo ternario allora N1 = - B< 0. Anche questo caso è
impossibile.
Indeterminazioni
Possono avvenire due tipi di indeterminazioni nella costruzione qualitativa delle
mappe delle curve residue.
La prima è la globale, quando ogni vertice può essere identificato come nodo o sella
ma possono esistere all’interno del diagramma diversi collegamenti che sono
compatibili con la struttura. In pratica una sella ha diversi vertici con quali avere
collegamenti.
Questo tipo di indeterminazione può avvenire solo in miscele con un azeotropo
ternario di sella.
67
La seconda indeterminazione è detta locale. Si verifica quando l’equazione
topologica indica quanti nodi e selle binari sono presenti ma la distribuzione delle
temperature non permette di individuare la natura delle singole specie.
In pratica ci può essere indeterminazione locale quando N3=0 oppure N3=1, e ci può
essere sia locale che globale se c’è un ternario di sella.
Foucher, Doherty e Malone hanno analizzato le possibili strutture delle mappe delle
curve residue variando i parametri dell’equazione topologica.
A) S3=1
La condizione necessaria per cui esiste un ternario di sella è che il numero di
possibili collegamenti sia almeno uguale a quattro.
Knight provò che N1 è pari se B è pari, e dispari se B è dispari. I vari possibili casi
sono:
1.
2.
3.
4.
5.
6.
Se B = 1 e N1= 1 il ternario di sella non esiste
Se B = 1 e N1= 3 allora N1 + B = 4
Se B = 2 e N1= 0 il ternario di sella non esiste
Se B = 2 e N1= 2 allora N1 + B = 4
Se B =3 e N1 = 1 allora N1 + B = 4
Se B =3 e N1= 3 allora N1 + B = 6
A1) Nel caso generale quando N1 + B = 4, le quattro connessioni potenziali sono
quelle richieste per la sella ternaria. Quindi non ci sono indeterminazioni in questi
casi.
A2) Nel caso in cui N1 + B = 6 ci sono molti candidati per collegarsi all’azeotropo
ternario e quindi può esserci indeterminazione.
Per questo caso ci sono diverse strutture delle mappe residue.
L’equazione topologica ha come risultati S2 = 1 e N2 = 2. Hanno considerato nel loro
studio che i nodi sono stabili e che tutti gli azeotropi binari sono di minimo.
Con s si indica il ternario di sella e i tre binari con b1, b2, e b3 in ordine di
temperature di ebollizione crescenti:
T (b1) < T (b2) < T (L) < T (I) < T (H).
68
T (b2) <T(s) <T (I) e T (b2) <T (b3) <T (I)
Poiché T (b3) e T (s) possono essere più o meno volatili di L ci sono 6 diverse
distribuzioni di temperatura:
1.
2.
3.
4.
5.
6.
T (s) < T (b3) < T (L)
T (s) < T (L) <T (b3)
T (b3) < T (s) < T (L)
T (b3) < T (L) < T (s)
T (L) <T (b3) <T (s)
T (L) < T (s) <T (b3)
Il binario b1 è uno dei nodi poiché è il più basso bollente. L’altro nodo può essere o
b2 o b3.
Caso 1: Ci sono solo due specie più basso bollenti della sella ternaria, b1 e b2. Questi
sono connessi con il ternario e rappresentano i due nodi binari del sistema.
Di conseguenza, il componente puro comune a b1 e a b2 è connesso a s e b3 è il
binario di sella.
Il ternario di sella può avere il quarto collegamento sia con b3 sia con i componenti
puri perché sono tutti più alto bollenti. Invece, il binario di sella può essere connesso
con i nodi binari o con la sella ternaria, perché sono tutti più basso bollenti.
Quindi c’è un’indeterminazione globale tra le tre mappe.
Di seguito è rappresentata l’indeterminazione tra le mappe 112-S, 112-SL e 112-SH.
L
L
b3
I
L
b3
b3
H
I
H
I
H
Al cambiare della posizione di b3 (se è l’azeotropo di I-H o di L-I), l’indeterminazione
può esserci anche tra le mappe 211-S, 211-SL, e 211-Si. Doherty e Caldarola (1985)
con i pedici L, I, o H indica il componente puro con il quale la sella ternaria ha il suo
quarto collegamento.
69
Caso 2: T (s) < T (L) < T (b3). Questo caso è simile al primo, con la differenza che b3
deve essere l’azeotropo tra I e H.
Caso 3: T (b3)< T (s) < T (L). La sella binaria può essere uno tra b2 e b3, ma in
nessuno dei due casi possono essere collegati alla sella ternaria perché è più alto
bollente dei due.
Se b2 è la sella, potrà collegarsi solo con b1. Il ternario si collegherà con b1, b3, e
con i due componenti puri disponibili.
Se b3 è la sella, si può collegare solo con b2 o con b1; La sella ternaria con solo con
b1, b2, e due componenti puri rimasti disponibili.
In definitiva non si può sapere a priori quale tra b2 e b3 è la sella.
Caso 4: T (b3) < T (L) <T (s). Solo H e I sono più alto bollenti della sella ternaria; si
collegano quindi con lei. Anche l’azeotropo H-I si collega con la sella e quindi è uno
dei due nodi binari.
Se b1 è il nodo I-H allora b2 non può essere la sella perché l’unico componente più
volatile non è disponibile, b3 di conseguenza sarà la sella binaria. La mappa in
questo caso è unica.
Caso 5: T (L) < T (b3) < T(s). Questo caso è simile al caso 4, con la differenza che b3 il
nodo binario di I-H. La mappa in questo caso è unica.
Caso 6: T (L) < T (s) < T (b3). La sella ternaria deve collegarsi con due nodi instabili
più volatili che possono essere solo b1 e b2. L’ altro possibile nodo sarebbe potuto
essere L ma è stato stabilito che è un nodo stabile. Il ternario dovrebbe collegarsi a L
come nodo stabile ma il profilo di temperature stabilisce che dovrebbe essere il
contrario. Quindi la distribuzione delle temperature è incompleta o sbagliata.
Parte B: S3= 0; N3= 0 o 1. Nei sistemi senza azeotropo ternario di sella può avvenire
un’indeterminazione locale.
Per dimostrare che la condizione necessaria affinché non ci sia un’indeterminazione
è Bib = S2 si può sintetizzare il ragionamento in due stadi:
B1: La natura di tutti i componenti puri e dell’azeotropo ternario è nota grazie alle
regole 1) e 2) illustrate all’inizio di questo paragrafo. Quindi la presenza
70
dell’indeterminazione locale dipende dal numero e dalla natura degli azeotropi
binari.
L’indeterminazione locale richiede la presenza di almeno due binari che possono
essere sia un nodo sia una sella non violando i risultati dell’equazione topologica.
Una sella deve essere necessariamente una specie intermedia poiché è connessa
con un componente più pesante e con uno più leggero. Quindi un azeotropo binario
per poter essere sia una sella che un nodo deve essere per forza una specie
intermedia.
In definitiva quindi la condizione necessaria affinché ci sia indeterminazione locale è
la presenza di una sella binaria e di un nodo binario intermedio.
B2: Dalla condizione imposta in B1 deriva che non c’è indeterminazione locale se
tutti i binari intermedi sono o tutti selle o tutti nodi. Ma non tutti gli azeotropi
intermedi possono essere nodi (proprietà 6), e quindi in un sistema senza ternario di
sella l’indeterminazione locale non può avvenire se tutti i binari intermedi sono
selle.
71
Determinare tutti i
componenti puri e gli
azeotropi
Determinare la natura dei
componenti puri
si
Ternario di
sella?
si
N1 + B = 6 ?
no
Indeterminazione
globale/locale
no
Calcola N2 e S2
Collega il ternario di sella a
tutti gli azeotropi binari e ai
componenti puri nodi
Calcola B ib numero di
azeotropi binari intermedi)
Fine
Esamina la consistenza dei
dati
si
Bib = S2 ?
Nodo
ternario?
si
Collegalo con le selle
binarie, quando possibile
no
Indeterminazione
locale
no
Scarta i collegamenti
impossibili per le selle
binarie rimanenti
Modello VLE
Collega le selle binarie
Calcola mappa delle
curve residue reale
Fine
Fine
72
Nel corso del lavoro di tesi, è stata iniziata l'implementazione di un codice nel
linguaggio Justbasic per la costruzione automatica dei DRDs.
Trattandosi di un lavoro di programmazione lunga e molto complessa, ci si è limitati
ai sistemi ternari che presentino solo azeotropi binari, essendo sicuramente molto
più frequentemente incontrati.
L’algoritmo è costituito da vari stadi.
1) Si inseriscono le temperature dei componenti puri e degli azeotropi binari
2) Viene fatto un controllo sulle temperature dei binari per verificare se i valori
inseriti dall'utente sono di minimo o di massimo,
3) Viene determinata la tipologia dei componenti puri secondo quanto è stato
esposto,
4) Viene determinata la tipologia dei binari e viene fatto il test di consistenza dei
dati,
5) Infine viene presentata una grafica delle connessioni
1) è stata creata un’interfaccia per poter inserire le temperature
73
2) Con il tasto "Inserisci" vengono inserite nel programma i dati e controllate le
temperature dei binari affinchè siano tutti di minimo o di massimo
3) La natura dei componenti puri viene determinata attraverso una funzione che
controlla le temperature delle specie adiacenti al componente puro
4) Con il tasto "Consistenza?" sono calcolati il numero di selle e di nodi binari
attraverso l’equazione topologica. Poi con una funzione che controlla se i binari sono
estremi o intermedi in termini di temperature viene fatto il test di consistenza e
viene determinata la natura degli azeotropi binari
5) Con il tasto "Grafica" viene tracciato il diagramma
In appendice è presentato una parte del codice che analizza, verifica la consistenza
dei dati inserite e determina la tipologia dei componenti puri e dei azeotropi binari.
'nomainwin
'set the foreground and background colors
BackgroundColor$ = "darkblue"
ForegroundColor$ = "white"
TextboxColor$ = "black"
statictext #dialog.static, "T ebollizione componente 1, °C =", 10, 15, 160, 20
statictext #dialog.static, "T ebollizione componente 2, °C =", 10, 45, 160, 20
statictext #dialog.static, "T ebollizione componente 3, °C =", 10, 75, 160, 20
statictext #dialog.static, "T ebollizione azeotropo 12, °C =", 10, 125, 160, 20
statictext #dialog.static, "T ebollizione azeotropo 13, °C =", 10, 155, 160, 20
statictext #dialog.static, "T ebollizione azeotropo 23, °C =", 10, 185, 160, 20
statictext #dialog.static, "T ebollizione azeotropo 123, °C =", 10, 235, 160, 20
statictext #dialog.static, "N2=",270,120,20,20
statictext #dialog.static, "S2=",270,150,20,20
textbox #dialog.tbox1, 190, 10, 50, 20
textbox #dialog.tbox2, 190, 40, 50, 20
74
textbox #dialog.tbox3, 190, 70, 50, 20
textbox #dialog.tbox4, 190, 120, 50, 20
textbox #dialog.tbox5, 190, 150, 50, 20
textbox #dialog.tbox6, 190, 180, 50, 20
textbox #dialog.tbox7, 190, 230, 50, 20
textbox #dialog.tbox8, 250, 10, 50, 20
textbox #dialog.tbox9, 250, 40, 50, 20
textbox #dialog.tbox10, 250, 70, 50, 20
textbox #dialog.tbox11, 290, 120, 20, 20
textbox #dialog.tbox12, 290, 150, 20, 20
textbox #dialog.tbox13, 250, 180, 20, 20
textbox #dialog.tbox14, 250, 150, 20, 20
textbox #dialog.tbox15, 250, 120, 20, 20
button #dialog.accept, "Accept", [gotIt], UL, 240, 280
button #dialog.quit, "Quit", [quit], UL, 20, 280
button #dialog.consis, "Consistenza?", [consis], UL, 80, 280
button #dialog.Grafico, "Grafico", [graf], UL, 180, 280
open "Input Boiling Temperature, Jand 2011" for dialog as #dialog
print #dialog.tbox4, "NA"
print #dialog.tbox5, "NA"
print #dialog.tbox6, "NA"
print #dialog.tbox7, "NA"
print #dialog, "trapclose [quit]"
wait
[gotIt]
B=0
75
cls
gosub[pulisci]
print #dialog.tbox1, "!contents? name$" : p1 = val(name$) : print p1
print #dialog.tbox2, "!contents? name$" : p2 = val(name$) : print p2
print #dialog.tbox3, "!contents? name$" : p3 = val(name$) : print p3
' inizio acquisizione ed analisi dei dati binari in sequenza
print #dialog.tbox4, "!contents? name$"
if (name$ ="NA") then
check1$ = "OK"
else
gosub[b12]
end if
print #dialog.tbox5, "!contents? name$"
if (name$ ="NA") then
check2$ = "OK"
else
gosub[b13]
end if
print #dialog.tbox6, "!contents? name$"
if (name$ ="NA") then
check3$ = "OK"
else
gosub[b23]
end if
print #dialog.tbox7, "!contents? name$"
if (name$ ="NA") then
76
check4$ = "OK"
else
gosub[t123]
end if
if (check1$ ="Invalid") or (check2$ ="Invalid") or (check3$ ="Invalid") or (check4$ ="Invalid") then
notice "Please correct the data"
print check1$
print check2$
print check3$
else
notice "OK "; B; " total Binary Azeotrops"
if (check1$ ="OK") and (check2$ ="OK") and (check3$ ="OK") and (check4$ ="OK") then
gosub[tipopur]
end if
if (check1$ ="si") or (check2$ ="si") or (check3$ ="si") then
gosub[tipopurbin]
end if
end if
wait
'----------------------------------------------------------------------------------[pulisci]
check1$ ="notset”
check2$ ="notset"
check3$ ="notset"
check4$ ="notset"
77
print #dialog.tbox8, " "
print #dialog.tbox9, " "
print #dialog.tbox10, " "
print #dialog.tbox11, " "
print #dialog.tbox12, " "
print #dialog.tbox13, " "
print #dialog.tbox14, " "
print #dialog.tbox15, " "
return
'----------------------------------------------------------------------------------[b12]
print #dialog.tbox4, "!contents? name$"
if (name$ <> "Invalid") then
b12 = val(name$)
if ((b12>p1) and (b12>p2)) xor ((b12<p1) and (b12<p2)) then
B=B+1
print B
check1$ = "si"
'b12tip$ = test$(b12,p1,p2)
print b12tip$
else
print #dialog.tbox4, "Invalid"
check1$ = "Invalid"
notice "Azeotropo binario b12 non è un estremo"
end if
else
78
check1$ = "Invalid"
end if
return
'--------------------------------------------------[b13]
print #dialog.tbox5, "!contents? name$"
if (name$ <> "Invalid") then
b13 = val(name$)
if ((b13>p1) and (b13>p3)) xor ((b13<p1) and (b13<p3)) then
B=B+1
check2$ = "si"
b13tip$ = test$(b13,p1,p3)
print b13tip$
else
print #dialog.tbox5, "Invalid"
check2$ = "Invalid"
notice "Azeotropo binario b13 non è un estremo"
end if
else
check2$ = "Invalid"
end if
return
'--------------------------------------------------[b23]
print #dialog.tbox6, "!contents? name$"
79
if(name$ <> "Invalid") then
b23 = val(name$)
if ((b23>p2) and (b23>p3)) xor ((b23<p2) and (b23<p3)) then
B=B+1
print B
check3$ = "si"
b23tip$ = test$(b23,p2,p3)
print b23tip$
else
print #dialog.tbox6, "Invalid"
check3$ = "Invalid"
print check3$
notice "Azeotropo binario b23 non è un estremo"
end if
else
check3$ = "Invalid"
end if
return
'-----------------------------------------------------------------------[t123]
print #dialog.tbox7, "!contents? name$"
t123 = val(name$)
print t123
return
'-----------------------------------------------------------------------80
[tipopur]
print "sono in tipopur, ecco B"
print p1 ; p2 ; p3
if (B = 0) then
tip1$ = nos$(p1,p2,p3)
tip2$ = nos$(p2,p1,p3)
tip3$ = nos$(p3,p2,p1)
print #dialog.tbox8, tip1$
print #dialog.tbox9, tip2$
print #dialog.tbox10, tip3$
end if
return
'-----------------------------------------------------------------------[tipopurbin]
print "sono in tipopurbin, ecco B"
'.......................................................
if (check1$ = "si") and (check2$ = "si") then
tip1$ = nos$(p1,b12,b13)
end if
if (check1$ = "si") and (check2$ <> "si") then
tip1$ = nos$(p1,b12,p3)
end if
if (check1$ <> "si") and (check2$ = "si") then
tip1$ = nos$(p1,p2,b13)
end if
81
if (check1$ <> "si") and (check2$ <> "si") then
tip1$ = nos$(p1,p2,p3)
end if
'.......................................................
if (check1$ = "si") and (check3$ = "si") then
tip2$ = nos$(p2,b12,b23)
end if
if (check1$ = "si") and (check3$ <> "si") then
tip2$ = nos$(p2,b12,p3)
end if
if (check1$ <> "si") and (check3$ = "si") then
tip2$ = nos$(p2,p1,b23)
end if
if (check1$ <> "si") and (check3$ <> "si") then
tip2$ = nos$(p2,p1,p3)
end if
'.............................................................
if (check2$ = "si") and (check3$ = "si") then
tip3$ = nos$(p3,b13,b23)
end if
if (check2$ = "si") and (check3$ <> "si") then
tip3$ = nos$(p3,b13,p2)
end if
if (check2$ <> "si") and (check3$ = "si") then
tip3$ = nos$(p3,p1,b23)
end if
82
if (check2$ <> "si") and (check3$ <> "si") then
tip3$ = nos$(p3,p2,p1)
end if
'.......................................................
print #dialog.tbox8, tip1$
print #dialog.tbox9, tip2$
print #dialog.tbox10, tip3$
return
'-----------------------------------------------------------------------[consis]
cls
print B
N1=0
'Calcolo N2 e S2
if (tip1$= "nodo") then
N1 = N1 +1
end if
if (tip2$= "nodo") then
N1 = N1 +1
end if
if (tip3$= "nodo") then
N1 = N1 + 1
end if
N2= (B+2-N1)/2
print #dialog.tbox11, N2
83
S2=B-N2
print #dialog.tbox12, S2
'b12
if ( (check1$="si") and (check2$<>"si") and (check3$<>"si")) then
ti4$=con1$(p1,p2,p3,b12)
end if
if ( (check2$="si") and (check1$="si") and (check3$<>"si")) then
ti4$=con2$(p1,p2,p3,b12,b13)
end if
if ((check1$="si") and (check3$="si") and (check2$<>"si")) then
ti4$=con2$(p1,p2,p3,b12,b23)
end if
if ((check3$="si") and (check1$="si") and (check2$="si")) then
ti4$=con3$(p1,p2,p3,b12,b13,b23)
end if
'-------------------------------------------------------'b13
if ((check2$="si") and (check1$<>"si") and (check3$<>"si")) then
ti5$=con1$(p1,p2,p3,b13)
end if
if ((check2$="si" and check3$="si" and check1$<>"si")) then
ti5$=con2$(p1,p2,p3,b13,b23)
end if
if ((check2$="si") and (check1$="si") and (check3$<>"si")) then
ti5$=con2$(p1,p2,p3,b13,b12)
end if
84
if ((check1$="si") and (check2$="si") and (check3$="si")) then
ti5$=con3$(p1,p2,p3,b13,b12,b23)
end if
' ------------------------------------------------------------'b23
if ((check3$="si") and (check1$<>"si") and (check2$<>"si")) then
ti6$=con1$(p1,p2,p3,b23)
end if
if ((check3$="si") and (check1$="si") and (check2$<>"si")) then
ti6$=con2$(p1,p2,p3,b23,b12)
end if
if ((check3$="si") and (check2$="si") and (check1$<>"si")) then
ti6$=con2$(p1,p2,p3,b23,b13)
end if
if ((check3$="si") and (check2$="si") and (check1$="si")) then
ti6$=con3$(p1,p2,p3,b23,b12,b13)
end if
'--------------------------------------------------------be=0
if ti4$="be" then
be=be+1
end if
if ti5$="be" then
be=be+1
end if
if ti6$="be" then
85
be=be+1
end if
print be
if (be<>N2) then
print "Invalid"
check=0
notice"Dati inconsistenti, il numero di binari intermedi è diverso da s2"
end if
if ti4$="be" then
print #dialog.tbox15, "N2"
end if
if ti4$="bib" then
print #dialog.tbox15, "S2"
end if
if ti5$="be" then
print #dialog.tbox14, "N2"
end if
if ti5$="bib" then
print #dialog.tbox14, "S2"
end if
if ti6$="be" then
print #dialog.tbox13, "N2"
end if
if ti6$="bib" then
print #dialog.tbox13, "S2"
end if
86
wait
[quit]
close #dialog
end
'**************************************************************************
Function test$(A, B, C)
if (A > B) and (A > C)then
test$="mas"
else
test$="min"
end if
End Function
'**************************************************************************
Function nos$(A, B, C)
if ((A > B) and (A > C)) xor ((A < B) and (A < C)) then
nos$="nodo"
else
nos$="sella"
end if
End Function
'**************************************************************************
Function con1$(A,B,C,D)
if ((D<A) and (D<B) and (D<C)) xor ((D>A) and (D>B) and (D>C)) then
con1$="be"
else
87
con1$="bib"
end if
End Function
Function con2$(A,B,C,D,E)
if ((D<A) and (D<B) and (D<C) and (D<E)) or ((D>A) and (D>B) and (D>C) and (D>E)) then
con2$="be"
else
con2$="bib"
end if
End Function
Function con3$(A,B,C,D,E,F)
if ((D<A) and (D<B) and (D<C) and (D<E) and (D<F)) or ((D>A) and (D>B) and (D>C) and (D>E) and
(D>F)) then
con3$="be"
else
con3$="bib"
end if
End Function
88
Bibliografia
Foucher, E.R.;Doherty, M. F.; Malone, M. F. Automatic screening of Entrainers for Homogeneous Azeotropic
distillation. Ind. Eng. Chem. Res. 1991, 30 ,760-772.
Doherty, M. F.; Caldarola, G. A. Design and Synthesis of Homogeneous Azeotropic distillation. 3. The
sequencing of Columns for Azeotropic and Extractive Distillations. Ind. Eng. Chem. Fundam. 1985, 24, 474485
Gert-Jan, A. F. Fien,Y. A. Liu. Heuristic and Shortcut Design of Separation Processes Using Residue Curve
Maps. Ind. Eng. Chem. Res. 1994,33,2505-2522.
Widagdo S., Seider W. D. Azeotropic Distillation Aiche Journal, 1996 vol.42,No.1
Green Don W. and Perry Robert H. Perry’s chemical engineers’ Handbook 8TH edition
Henley J., Seader D. Equilibrium-Stage separation operations in Chemical Engineering
Kister Henry Z. Distillation design
Laroche Lionel, Dissertation ; Homogeneous azeotropic distillation: Entrainer selection " California institute
of Technology, Division of Chemistry e Chemical Engineering; Pasadena, California (1991).
89
90
91
92
Scarica

Tesi Romano - Corsi di Studio di Ingegneria