x+5=6 2x = 12 + x Il concetto di identità “Se a un numero addizioniamo 5 e poi sottraiamo il numero stesso, otteniamo 5”. Questa frase può essere tradotta in un’uguaglianza. Infatti, se indichiamo con x il numero, possiamo scrivere: x+5−x=5 Questa uguaglianza è vera per qualsiasi valore attribuito alla lettera x, per esempio: • se x = 2 • se x = 0 allora 2 + 5 − 2 = 5 allora 0 + 5 − 0 = 5 5=5 5=5 Un’uguaglianza di questo tipo si chiama identità. L’identità è un’uguaglianza fra due espressioni algebriche, di cui almeno una letterale, verificata per qualsiasi valore attribuito alle lettere che in essa figurano. Alcuni esempi • “Il doppio di un numero relativo addizionato al numero stesso dà come somma il triplo del numero.” In termini matematici: 2x + x = 3x 3x = 3x Tale uguaglianza è un’identità perché è verificata per qualsiasi valore venga attribuito alla lettera x. • L’uguaglianza (a + b)2 = a2 + 2ab + b2 è un’identità perché è verificata per qualsiasi valore delle lettere a e b; per esempio: se a = 0 e b = 1 allora (0 + 1)2 = 02 + 2 × 0 × 1 + 12, cioè 1 = 1; se a = 3 e b = 1 allora (3 + 1)2 = 32 + 2 × 3 × 1 + 12, cioè 16 = 16. Prova tu • “Il triplo di un numero aumentato del suo doppio è uguale al quintuplo del numero.” Traduci questa frase in una espressione letterale: ................... È una identità? …… 3x +2x = 5x 5x = 5x è una identità L’equazione “Se a un numero naturale addizioniamo 5, otteniamo 6”. In termini matematici: x+5=6 Tale uguaglianza è vera solo per un particolare valore attribuito alla lettera x, e cioè il valore 1. Infatti se x = 1 allora 1 + 5 = 6 6 = 6 (vero) Se invece, per esempio: x = 0 allora 0 + 5 = 6 x = 3 allora 3 + 5 = 6 5 = 6 (falso) 8 = 6 (falso) Un’uguaglianza di questo tipo si chiama equazione e la lettera x si dice incognita. Incognita vuol dire “non conosciuta”. Un’equazione è un’uguaglianza fra due espressioni algebriche, di cui almeno una letterale, verificata solo per particolari valori attribuiti all’incognita o alle incognite che in essa figurano. Alcuni esempi • Se a un numero relativo aggiungiamo 8, otteniamo 5. Qual è il numero? Indicando con y il numero che non conosciamo (l’incognita), l’equazione che traduce il problema è: y + 8 = 5 L’uguaglianza è vera quando a y attribuiamo il valore −3. Infatti: −3 + 8 = 5 • Troviamo quel numero relativo che, elevato al quadrato, dà 25. Indicando con x l’incognita, l’equazione è: x2 = 25 L’uguaglianza è vera quando a x attribuiamo due valori: 5 o −5. Infatti: (5)2 = 25 e (−5)2 = 25 Prova tu • Stabilisci quali delle seguenti uguaglianze indicano un’identità (I) e quali un’equazione (E). 2x + 3x = 5x ...... I 2x + 3x = 5 ...... E 2x = 0 ...... E 0 • x = 0 ......I (x − 1)2 = x2 + 2x + 1 ...... E Conosciamo i termini di un’equazione Nelle equazioni l’espressione scritta a sinistra dell’uguale si dice 1° membro; quella a destra 2° membro: 2x = 25 1° 2° membro membro y+8 = 5 1° 2° membro membro x2 = 25 1° 2° membro membro • La lettera che compare nelle equazioni, ed esprime un valore numerico variabile, si dice incognita. • Il numero che moltiplica l’incognita si dice coefficiente dell’incognita. • I termini che non contengono incognite si dicono termini noti. • Il valore che attribuito all’incognita rende vera l’uguaglianza, se esiste, si dice soluzione o radice dell’equazione. Un’equazione può avere più soluzioni o nessuna soluzione. Soluzione e grado di un’equazione Risolvere un’equazione significa trovare le sue soluzioni. La soluzione di un’equazione si indica solitamente con una semplice uguaglianza tra l’incognita utilizzata e il valore trovato. 2x = 25 x= 25 2 y+8=5 y=−3 x2 = 25 x= 5 a2 = −36 nessuna soluzione Il grado di un’equazione a un’incognita è dato dall’esponente massimo con cui essa appare. Se l’incognita compare con l’esponente 1 si ha un’equazione di 1° grado a un’incognita → y = 2 Se l’incognita compare con l’esponente 2 si ha un’equazione di 2° grado a un’incognita → x2 − 4 = 0 Equazioni famose Lo sviluppo del sapere scientifico è disseminato di equazioni famose. Sicuramente ti sarà capitato di leggere da qualche parte la celebre equazione di Albert Einstein (1879-1955), che lega l’energia alla massa: E = mc2 Avrai anche studiato le equazioni di Galileo (1564-1642) per il moto, che legano posizione e velocità di un corpo: x = x0 + v • t + 1 a • t2 2 Gli scienziati per descrivere ogni genere di situazione utilizzano spesso equazioni complicatissime. Alcuni esempi 2x − 3 = 9 l’incognita è x è un’equazione di 1° grado i termini noti sono −3 e 9 L’uguaglianza è vera per x = 6. x2 = 25 è un’equazione di 2° grado l’incognita è x il termine noto è 25 L’uguaglianza è vera per x = 5 e x = − 5. è un’equazione di 2° grado perché il termine x • y è un monomio di 2º grado; le incognite sono x e y e il termine noto è 24. I valori che rendono vera l’uguaglianza sono infinite coppie ordinate: (1, 24), (2, 12), (3, 8), (6, 4), …….. x • y = 24 Prova tu • Indica le incognite, i termini noti e il grado delle seguenti equazioni. 6x − 1 = 15 2 = 4 + 3a 3xy = 1 L’insieme delle soluzioni L’insieme delle soluzioni di un’equazione si indica con S. Nel caso delle equazioni: 2x = 25 y+8=5 x2 = 25 a2 = −36 S= 25 2 S = {− 3} S = { + 5; −5 } S= Quando per un’equazione abbiamo S = l’equazione si dice impossibile. , È sempre importante considerare l’insieme in cui si opera. Infatti può accadere che: non esista alcun valore che verifichi l’equazione. il valore esista ma non sia accettabile perché non appartiene all’insieme di esistenza. Allora diciamo che l’equazione è impossibile. Alcuni esempi • Troviamo quel numero intero relativo che è uguale a se stesso aumentato di 2. x=x+2 x∈Z La frase che esprime il problema ci fa capire che non può esistere alcun numero che verifichi questa uguaglianza: quindi l’equazione è impossibile non solo in Z ma in un qualsiasi altro insieme numerico. • Troviamo quel numero naturale il cui doppio è uguale a 25. 2x = 25 x∈N 25 L’uguaglianza risulta vera quando a x attribuiamo il valore 2 25 infatti 2• = 25 25 = 25 2 Tale valore però non è accettabile perché operiamo in N e 25 ∉N L’equazione è impossibile nell’insieme dei numeri naturali.2 Prova tu • in N Stabilisci quali delle seguenti uguaglianze • in Qa sono impossibili. • in R □ x +1 = 3 x□ 5 + x = 0 □ x2 = 4 □ 5x + 5 = 5 □ 5x = 9 x □ x2 = −49 x □ 3x = 5 □ 4x = 1 Esercitati • Completa le frasi scegliendo tra i termini particolari valori, almeno due, disuguaglianza, uguaglianza, almeno una, qualsiasi valore. uguaglianza Una identità è una ............................ fra due espressioni algebriche almeno una qualsiasi valore di cui ................................ letterale, verificata per .............................. attribuito alle lettere che in essa figurano. uguaglianza Una equazione è una ....................... fra due espressioni algebriche almeno una particolari valori di cui ........................ letterale, verificata solo per .......................... attribuiti alla lettera o alle lettere che in essa figurano. Esercitati • Verifica che l’uguaglianza x2 − 2x + 1 = (1 − x)2 è una identità attribuendo alla lettera x almeno quattro valori a piacere. Se x = ...... allora ........................ Se x = ...... allora ........................ Se x = ...... allora ....................... Se x = ...... allora ........................ • Considera l’equazione 4x + 3 = 13x − 2 e i suoi vari elementi. primo L’equazione assegnata è di primo o di secondo grado? .................. Come riconosci se è di primo o di secondo grado? .........................……………………………………………………. • Scrivi: a) una equazione di primo grado con la sola incognita x: ................... b) una equazione di primo grado con le incognite x e y: ..................... c) una equazione di secondo grado con la sola incognita y: ...............