Rules based interlingua
translation in ATLAS
Leonardo Lesmo & Alessandro Mazzei & Cristina Battaglino
Dipartimento di Informatica
Università degli Studi di Torino
[email protected]
Seminari CIRMA 2012
13-06-2012
1
Interaction
Models Group
The linguistics of LIS

Several articolators: parallelism

Spatial “organization” of the sentence Meteo19-3

Plural

SOV

Many local dialects

A few linguistic studies

No prepositions, genre, articles

No natural written form (!!!): GLOSSE+feats
2
Interaction
Models Group
Rules-based Translation
Architecture
Italian
Sentence
Parser
Dependency
Grammar
for Italian
Semantic
Interpreter
AW-LIS
Spatial
Allocation
Planner
Spatial
Allocation
Strategy
AEW-LIS
Ontology
Generator
Animation
Interpreter
CCG for
LIS
Signary
Interaction
Models Group
Parser
Semantic
Interpreter
Generator
Spatial
Allocation
Planner
Interaction
Models Group
Parser
Semantic
Interpreter
Generator
Spatial
Allocation
Planner
Interaction
Models Group
Turin University Parser

A wide-coverage bottom-up rule-based dependency parser

Rules for: Chunking, Coordination, Verb-SubCat

Dependency relations

Morpho-syntactic

Syntactic-functional

Semantic
6
Interaction
Models Group
Turin University Parser
Paolo è davvero veloce
rmod
Chunking
Paolo
subj
Verb-SubCat
è davvero veloce
predcompl
rmod
Paolo
è davvero veloce
Interaction
Models Group
Turin University Parser
Oggi ultimo giorno del mese di Giugno,
con valori di temperatura superiori alla media
rmod
separator
rmod
Oggi
ultimo
rmod
rmod
giorno
del
arg
rmod
rmod arg
mese
di giugno
arg
, con
rmod
valori di
arg
temperatura
arg
superiori
arg
alla
media
8
Interaction
Models Group
Parser
Semantic
Interpreter
Generator
Spatial
Allocation
Planner
Interaction
Models Group
Semantic Interpreter

Frege compositional approach

Ontology based syntax-semantics interface

Sentence meaning is a complex semantic
network

Semantic objects (e.g. roles, time, space) are
encoded in the network
Interaction
Models Group
= Description + Weather + World
££entity
££weatherstatusdescription
£Adriatic
££sea
££weatherevent
££it-geograrea
££daydescription
££evaluableentity
££meteostatus-situation
££day
££timeintervaldescription
££it-area-spec
££time-interval
££geographicarea
££description
£
£positiveeval-entity
££evening
££weatherstatussituation
££precipitation
££positive-evening
£perturbato
££deicticdaydescription
££itregion
££storm
££clouds
££positive-day
££it-adriatic-region
£monday
£today
11
Interaction
Models Group
Computing Meaning by recursion
n
d1
...
...
di
...
...
dK
...
12
Interaction
Models Group
Ordinals
… ultimo giorno del mese …
adjc+ordin-rmod
ultimo
[£last]
rmod
arg
giorno del
[££day]
mese
[££month]
13
Interaction
Models Group
Ordinals in the ontology
££physical-entity
&part-smaller
&temporalpart-smaller
££time-interval
&day-indaymonth
££day
&part-bigger
££part-of
&temporalpart-bigger
££temporal-part-of
££day-month-part-of
&month-indaymonth
££month
££day-sequence
££sequenceableentity
&ord-described-item
££ordinaldescription
&reference-sequence
&ordinaldesc-selector
££entity-sequence
££ordinal-selector
£last
14
Interaction
Models Group
Ordinals in the ontology
adjc+ordin-rmod
££physical-entity
&part-smaller
&temporalpart-smaller
££time-interval
&day-indaymonth
££day
rmod
arg
&part-bigger
££part-of
&temporalpart-bigger
££temporal-part-of
££day-month-part-of
&month-indaymonth
ultimo
[£last]
giorno del
[££day]
mese
[££month]
££month
££day-sequence
££sequenceableentity
&ord-described-item
££ordinaldescription
&reference-sequence
&ordinaldesc-selector
££entity-sequence
££ordinal-selector
£last
15
Interaction
Models Group
Ordinals in the ontology
adjc+ordin-rmod
££physical-entity
&part-smaller
&temporalpart-smaller
££time-interval
&day-indaymonth
££day
rmod
arg
&part-bigger
££part-of
&temporalpart-bigger
££temporal-part-of
ultimo
[£last]
giorno del
[££day]
mese
[££month]
&month-indaymonth
££day-month-part-of
££month
££day-sequence
££sequenceableentity
&ord-described-item
££ordinaldescription
&reference-sequence
&ordinaldesc-selector
££entity-sequence
££ordinal-selector
£last
16
Interaction
Models Group
Ontological restriction
adjc+ordin-rmod
ultimo
[£last]
rmod
arg
giorno del
[££day]
⇝
mese
[££month]
££ordinaldescription
&reference-sequence
&ord-described-item
&ordinaldesc-selector
££day
££month
£last
17
Interaction
Models Group
Semantic Interpreter
rmod
separator
rmod
Oggi
ultimo
rmod
rmod
giorno
del
arg
rmod
rmod arg
mese
di giugno
arg
, con
rmod
valori di
arg
temperatura
arg
superiori
arg
alla
media
18
Interaction
Models Group
Parser
Semantic
Interpreter
Generator
Spatial
Allocation
Planner
Interaction
Models Group
Natural Language Generation
NLG systems use knowledge about language and the
application domain to automatically produce documents,
reports, explanations, help messages, and other kinds of texts
Interaction
Models Group
Natural Language Generation
NLG systems use knowledge about language and the
application domain to automatically produce documents,
reports, explanations, help messages, and other kinds of texts
Document
Planning
●
Content Selection
Micro
Planning
Surface
Realization
●
Lexicalization
●
Word Order
●
Aggregation
●
Functional Words
●
Ref. Expression
●
Inflections
TEXT
Interaction
Models Group
NLG in ATLAS
Semantic Network
Abstract
Syntax Tree
Micro
Planning
LIS
Dependency Tree
Surface
Realization
Interaction
Models Group
ATLAS Generator
MicroPlanner
Sentence
Designer
●
●
●
●
●
Homemade
LISP
Heuristics
Expert System
Taxonomy
Realizer
OpenCCG
●
●
●
●
Take-away
Java
LIS-CCG (homemade)
AMMA-DB
Interaction
Models Group
Sentence Designer
Algorithm:
1.Segmentation
Split the semantic network into singular messages
2.Lexicalization
Introduce quasi-lexical items
Introduce syntactic relations between items
3.Simplification
Remove non-necessary quasi-lexical items
Remove repetitions
Interaction
Models Group
Sentence Designer
LISA Expert System: ~50 rules
(defrule rule-TO-FORESEE-01 ()
(SEMANTIC-STATE (NAME ££TO-FORESEE-1) (ARG-1 ?X2))
(SEMANTIC-RELATION (NAME &FORESEEN) (ARG-1 ?X2) (ARG-2 ?X3))
=>
(assert (syntactic-relation (name SYN-OBJ) (arg-1 ?X2) (arg-2 ?X3))))
(defrule rule-COMPARISON-RELATION ()
(SEMANTIC-STATE (NAME ££COMPARISON-RELATION) (ARG-1 ?X12))
(SEMANTIC-RELATION (NAME &COMPAR-ARG1) (ARG-1 ?X12) (ARG-2 ?X11))
(SEMANTIC-RELATION (NAME &COMPAR-ARG2) (ARG-1 ?X12) (ARG-2 ?X14))
(SEMANTIC-RELATION (NAME &COMPAR-OP) (ARG-1 ?X12) (ARG-2 ?Y12))
=>
(assert (syntactic-relation (name SYN-SUBJ) (arg-1 ?y12) (arg-2 ?x11)))
(assert (syntactic-relation (name SYN-OBJ) (arg-1 ?y12) (arg-2 ?x14))))
Interaction
Models Group
OpenCCG
LIS-CCG : ~ 40 Syntactic Families, ~ 30 morphological
Families
noun-II(nord-1533-1,it-northern-region,it-region,noun)
...
family TransV_III-A-s_nuvola-aumentare {
entry: s<1> [E] \ np [X] : E:meteo-status-situation(* <SYN-SUBJ>X:clouds);
};
family TransV_III-B {
entry: s<1> [E PoS=verb] \ np [X] \ np [Y]:
E:meteo-status-situation(* <SYN-SUBJ>X:evaluable-entity <SYN-OBJ>Y:evaluable-entity) ;
};
family Adj-II {
entry: n<~5> [X] \* n<5> [X] : X(<ATT>(P *));
entry: s <1>[X adj] \* np [Y] :
X:weather-status-situation(*<SYN-SUBJ>Y:meteo-status-situation);
entry: s <1>[X adj] \* np [Y] :
X:weather-status-situation(*<SYN-SUBJ>Y:evaluable-entity);
entry: s <1>[X adj] \* np <5> [X] : X(<SYN-RMOD-SEQPOS>(P *));
entry: s <~1> [Z adj] \* s <1>[Z] : Z:event( <COORD> (P *));
}
Interaction
Models Group
Sentence
Designer
Interaction
Models Group
OpenCCG
SUBJ
oggi
RMOD
mese
noun–2669-2 noun–1398-2
RMOD
giugno
noun–3056-1
RMOD
giorno
ultimo
noun–1052-2 noun–2747-1
OBJ
SUBJ
RMOD
temperatura valore_valere media
noun–2998-2
noun–80020- 2
adj–3072-2
superiore
verb–3168-2
Interaction
Models Group
Parser
Semantic
Interpreter
Generator
Spatial
Allocation
Planner
Interaction
Models Group
Spatial Allocation Planner

Rule-based

Space


Iconic

Grammatical

Syntax

Phonology
Gravitation
Interaction
Models Group
Gestione spazio grammaticale
FUNCTION Split-space (…)
1. Trova dipendenti head in esame a cui si deve assegnare
un sottospazio per caratteristiche strutturali della frase
2. Divide sottospazio di giorno tra i dipendenti trovati
3. Richiama Split-space sui dipendenti trovati
4. Assegna posizione all’head in esame
5. Trova dipendenti che rilocano sulla head genitore per
caratteristiche strutturali della frase
Interaction
Models Group
Split-space (giorno)
1. Trova solo i dipendenti di “giorno” a cui si deve assegnare un
sottospazio per caratteristiche strutturali della frase: {oggi, mese}
Interaction
Models Group
Split-space (giorno)
1. Trova solo i dipendenti di “giorno” a cui si deve assegnare un
sottospazio per caratteristiche strutturali della frase: {oggi, mese}
2. Divide sottospazio di “giorno” tra i dipendenti trovati
Giorno
Oggi
[-1 0 0 0 0 0  1 0 0]
Mese
Ultimo
[-1 0 0 -0.5 0 0  0 0 0]
[0 0 0 +0.5 0 0  1 0 0]
Giugno
Interaction
Models Group
Split-space (giorno)
1. Trova solo i dipendenti di “giorno” a cui si deve assegnare un
sottospazio per caratteristiche strutturali della frase: {oggi, mese}
2. Divide sottospazio di “giorno” tra i dipendenti trovati
3. Richiama Split-space sui dipendenti trovati
Giorno
Oggi
[-1 0 0 0 0 0  1 0 0]
Mese
[-1 0 0 -0.5 0 0  0 0 0]
[0 0 0 +0.5 0 0  1 0 0]
Split-space
(oggi)
Split-space (mese)
Ultimo
Giugno
Interaction
Models Group
Split-space (giorno)
1. Trova solo i dipendenti di “giorno” a cui si deve assegnare un
sottospazio per caratteristiche strutturali della frase: {oggi, mese}
2. Divide sottospazio di “giorno” tra i dipendenti trovati
3. Richiama Split-space sui dipendenti trovati
4. Assegna posizione a ”giorno”
Rilocabile, non direzionale:
Giorno
Oggi
[-1 0 0 -0.5 0 0  0 0 0]
Split-space
(oggi)
(0.0 0.0 0.0)
[-1 0 0 0 0 0  1 0 0]
Mese
[0 0 0 +0.5 0 0  1 0 0]
Split-space (mese)
Ultimo
Giugno
Interaction
Models Group
Split-space (giorno)
1. Trova solo i dipendenti di “giorno” a cui si deve assegnare un
sottospazio per caratteristiche strutturali della frase: {oggi, mese}
2. Divide sottospazio di “giorno” tra i dipendenti trovati
3. Richiama Split-space sui dipendenti trovati
4. Assegna posizione a “giorno”
5. Esamina se ci sono dipendenti di “giorno” non ancora esaminati
6. Li riloca sulla head “giorno”: {ultimo}
Rilocabile, non direzionale:
Giorno
Oggi
Mese
[-1 0 0 -0.5 0 0  0 0 0]
[0 0 0 +0.5 0 0  1 0 0]
Split-space
(oggi)
(0.0 0.0 0.0)
[-1 0 0 0 0 0  1 0 0]
Split-space
(mese)
Ultimo
Rilocabile, non direzionale:
(0.0 0.0 0.0)
[-1 0 0 0 0 0  1 0 0]
Giugno
Interaction
Models Group
Spatial Allocation Planner
AEW-LIS
Interaction
Models Group
Conclusioni



Sistema interlingua “classico” di machine translation

Analisi profonda dell'italiano

Generazione LIS

Gestione grammaticale dello spazio
Ingegnerizzato

Desktop demo

WEB-service
Coverage and Quality

Potenziamento delle basi di conoscenza

Sistema di recovery

...
Interaction
Models Group
Coverage and Quality
The Welsh text says:
I am not in the office at the moment. Send any work to be translated.
Interaction
Models Group
Grazie per l'attenzione.
Interaction
Models Group
POST /TURBTWebService/RULEBTranslator/01234 HTTP/1.1
User-Agent: ATLAS-Orchestrator/1.0.0 (Linux)
Host: localhost:8080
Content-Type: text/xml
Content-length: ...
<?xml version="1.0"?>
<text id="01234">
<sentence id="5" start_time="8.45" duration_time="1.425">Temporali a centro nord</sentence>
<sentence id="6" start_time="9.875" duration_time="14.359">Sole a sud e al centro.</sentence>
</text>
1
Parser
4.1
2
3
WEB
Server
Servlet
Server
Apache
Tomcat
7
4.2
TextID
+
XML
RBT.java
6
5
8
HTTP/1.1 200 OK
Content-Type: text/sal
Content-Length: ...
5 8.45 1.425 ftp://.../01234/atlas_aewlis_manual_movie_meteo_080701_030000_f1.xml
6 9.875 14.359 ftp://.../01234/atlas_aewlis_manual_movie_meteo_080701_030000_f2.xml
FTP
server
Semantic
Interpreter
4.3
4.4
Generator
Spatial
Allocation
Planner
Interaction
Models Group
Turin University Parser
Domani le nuvole sono in aumento al nord
42
Interaction
Models Group
Esempio
“Le nuvole sono in aumento al nord”
Sentence
Designer
Interaction
Models Group
OpenCCG
RMOD
SUBJ
n​ord
nuvola
noun–1553-1 noun–2667-2
nuvola_aumentare
verb–2888-2
Interaction
Models Group
Parametro input
Descrizione parametro
…
GIORNO
…
Sign id
Id nel segnario
…
.
1053
…
Time Seq
Posizione della frase
…
4
…
Lemma
Nome del lemma
…
Giorno
…
Link
Etichetta arco
…
nil
Arg-ref
Direzione rilocazione
…
{}
…
Dependents
Lista dei dipendenti
…
{oggi, mese,
giugno}
…
Reloc
Rilocabilità
…
Yes
…
Absolute position
Posizione del segno non
rilocabile
…
Nil
…
Dir
Direzionalità
…
No
…Models Group
Interaction
NLG
Document
Planning
●
Content Selection
Micro
Planning
Surface
Realization
●
Lexicalization
●
Word Order
●
Aggregation
●
Functional Words
●
Ref. Expression
●
Inflections
like(Ale-4475,radio')
dislike(Ale-4475,tv')
sbj
Alex
sbj
Alex
amare
conj
odiare
obj
radio
TEXT
“Alex ama la radio
e Alex odia la TV”
obj
TV
Interaction
Models Group
Scarica

Oral Presentation - Dipartimento di Informatica