Modelling Vasculogenesis Dept. Mathematics Politecnico di Torino D. Ambrosi A. Gamba R. Kowalczyk L. Preziosi V. Lanza A. Tosin Division of Molecular Angiogenesis Inst. Cancer Research and Treatment Candiolo (TO) F. Bussolino E. Giraudo G. Serini Dal punto di vista fisiologico la descrizione degli aspetti che giocano un ruolo inportante nello sviluppo e nella crescita dei tumori e’ molto complicato. Molto dipende dall’ingrandimento utilizzato dal biologo nel descrivere i fenomeni o da chi vuole sviluppare i modelli matematici. Ci si puo’ infatti focalizzare sugli aspetti macroscopici e descrivere - la crescita dello sferoide multicellulare nella fase avascolare (ossia quando non si e’ ancora circondato di una propria rete di capillari) - o il processo di angiogenesi (i.e. la crescita di questa rete), - o la fase vascolare, - o il distacco di metastasi ed i meccanismi di diffusione ed adesione nei siti secondari. Tutto cio’ pero’ dipende da quanto succede ad un scala ancora piu’ piccola, la scala cellulare. Bisogna tener conto che le cellule tumorali interagiscono con altre cellule dell’organismo (cellule endoteliali, del sistema immunitario) e che esse stesse, come dei Pokemon, evolvono. Infine, il risultato di queste interazioni dipende da cosa succede ad una scala ancora piu’ piccola: la scala cellulare (degradazione del DNA, espressione dei geni, trasduzione dei segnali, adesione cellulare). Quindi il problema matematico viene ad essere intrinsecamente multi-scala. Tissue level Cellular level Sub-cellular level lymphocytes T helper lymphocytes T killer macrophages tumour cells plasma cells Endothelial cells The progression of a normal cell into a tumor cell implies several key steps Tumour Progression Angiogenesis Stimulation Proliferation Migration Organisation VASCULOGENESIS ON “MATRIGEL” VASCULOGENESIS ON “MATRIGEL” 30’ 2h 1h 8h 10h 6h 4h 12h 14h Let me mention that vasculogenesis in vitro is a standard test used by pharmaceutical companies and research centres to test the validity of antiangiogenic drugs Cords: Dose Response Control 0.001 mM 1 mM 0.01 mM 10 mM (Courtesy: Pharmaceutical Institute Mario Negri - Bergamo) 0.1 mM 100 mM Questions • What are the mechanisms driving the generation of the patterns? • Why is the size of a successful patchwork nearly constant? • What is the explanation of the transition obtained for low and high densities? n = 50 cells/mm2 n = 100 cells/mm2 n = 200 cells/mm2 n = 400 cells/mm2 • Is it possible to “manipulate” the formation of patterns? Zeldovich model Assumptions • Cells move on the Matrigel surface and do not duplicate • The cell population can be described by a continuous distribution of density n and velocity v • Cells release chemical mediators (c) • Cells are accelerated by gradients of soluble mediators and slowed down by friction (chemotaxis) • For low densities (early stages) the cell population can be modeled as a fluid of non directly interacting particles showing a certain degree of persistence in their motion • Tightly packed cells respond to compression Serini et al., EMBO J. 22, 1771-9, (2003) calvino.polito.it/~biomat calvino.polito.it/~preziosi D. Ambrosi, F. Bussolino, L.P., J. Theor. Med., (2004) Mathematical Model a = diffusion coefficient b = attractive strength g = rate of release of soluble mediators t = degradation time of soluble mediators e = friction coefficient a = typical dimension of endothelial cells x = (a t)1/2 ~ 0.1-0.2 mm D. Ambrosi, A. Gamba, G. Serini, Bull. Math. Biol., (2004) a ~ 10-7 cm2/s t ~ 103 s ~ 20 min a ~ .02 mm Mathematical Model p=0 blow-up p = ln n Keller Segel p = convex no blow-up R. Kowalczyk, J. Math. Anal. Appl., (2005) Temporal evolution 0h 3h 6h n = 50 cells/mm2 Temporal evolution n = 400 cells/mm2 n = 200 cells/mm2 Phase transition Percolative transition Swiss-cheese transition A. Gamba et al., Phys. Rev. Letters, 90, 118101 (2003) R. Kowalczyk, A. Gamba, L.P. Discr. Cont. Dynam. Sys. B 4 (2004) Percolative transition Fong, Zhang, Bryce, and Peng “Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice” Development 126, 3015-3025 (99) A quantity that can give us information about the structure of the percolating cluster at different scales is the density of the percolating cluster as a fanction of the radius. Percolative transition This is defined as the mean probability, Percolative density of sites belonging to the percolating cluster, inclosed in Mean cluster size, a box of side r. This shoud scale asmass, r^(D-d). Cluster For a percolating cluster of random percolation at the Sand-box method critical point, one expects a A. Gamba et al., Phys. Rev. Letters, 90 (2003) Percolative transition ~ 90 cells/mm2 fractal dimension D=1.896. Fractal dimension We found it. The value 1.50 may be the signature of the dynamic process that lead to the formation of the clusters Density of percolating cluster (driven for r>rc by the rapidly oscillating components of the concentration field) ~rD/r2 r .8 Swiss-cheese transition Stability of the uniform distribution R. Kowalczyk, A. Gamba, L. Preziosi Discrete and Continuous Dynamical Systems Figure 2. The balanced expression of heparinbinding VEGF-A versus VEGF120 controls microvessel branching and vessel caliber. (A) Schematic representation of hindbrain vascularization between 10.0 (1) and 10.5 (4) dpc; between 9.5 and 10.0 dpc, the perineural vascular plexus in the pial membrane begins to extend sprouts into the neural tube (1), which grow perpendicularly toward the ventricular zone (2), where they branch out to form the subventricular vascular plexus (3,4). (B,C) Microvessel appearance on the pial and ventricular sides of a flat-mounted 12.5-dpc hindbrain; the midline region is indicated with an asterisk; the pial side of the hindbrain with P, the ventricular side with V. (D–F) Visualization of vascular networks in representative 500-µm2 areas of the 13.5-dpc midbrain of wt/wt (D), wt/120 (E), and 120/120 (F) littermates; C. Ruhrberg, H. Gerhardt, M. Golding, R. Watson, S. Ioannidou, H. Fujisawa, C. Betsholtz, and D.T. Shima, “Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel Saturated Control Saturation with VEGF analysis of ECs plated on Matrigel in r the presence of saturating amount stograms of , cos , , and cos (see trajectories on Matrigel either in control culture een) or in the presence a saturating nt of VEGF-A165 (light blue). The sities of cos and cos were fitted ibutions (red lines) by maximum e observed densities in VEGF-A165 ditions are markedly more symmetric served in control conditions, of directionality in EC motility. indicate that also after extinguishing ents EC movement on Matrigel ertain degree of directional Control Persistence ograms of show that in the saturating amount of VEGF-A165 completely decorrelated from the imulated VEGF gradients. We Saturated s that values in saturating conditions distributed by performing a t test (p = 0.397). The same test values in control conditions gives a hich allow to reject the hypothesis at e significance level. Directionality Anisotropic case V. Lanza Exogenous control chemoattractant chemorepellent L L L’ Exogenous chemoattrantant V. Lanza Source in the center Source on the sides Exogenous chemorepellent Line Source Point Source Exogenous chemorepellent new characteristic length action range of chemorepellent • Parameters used give: l' = 0.31mm • In dimensionless form: l'* = 0158 . * l' 016 . Exogenous chemorepellent new characteristic length action range of chemorepellent • Parameters used give: l' = 0.31mm • In dimensionless form: l'* = 0158 . 2l'* 0.27 Vascularization: Tumor vs. Normal Physiological observations: • Increased vessel permeability • Increased proliferation of EC • Abnormal blood flow • Swelling (dilatation) • Increased tortuosity • Abnormal branching • Presence of blind vessels • Loss of hierarchy • Increased disorder Not only this but even from tumor to tumor one can identify tumor aggressiveness from the degree of “disorder” of the vascular network sorrounding it. The wish of medical doctors would be to identify the quantities which are important to monitor to quantify the abnormality Vascularization: Tumor vs. Tumor Aim: Distinguish the morfological characteristics to quantify the abnormality • Identify with non invasive techniques the existence of abnormal morfologies • Quantify the progression state of the tumor • Quantify the efficacy of drugs Konerding M. et al Am J Pathol 152: 1607-1616, 1998