Chimica Inorganica 3 General Electronic Considerations of Metal-Ligand Complexes Metal complexes are Lewis acid-base adducts formed between metal ions (the acid) and ligands (the base). Chimica Inorganica 3 The interaction of the frontier atomic (for single atom ligands) or molecular (for many atom ligands) orbitals of the ligand and metal lead to bond formation, Chimica Inorganica 3 More quantitatively, the interaction energy of stabilization and destabilization, εσ and εσ*, respectively, is defined on the following energy level diagram, Chimica Inorganica 3 Treating this problem within the LCAO framework comprising metal and ligand orbitals yields, ! = c M" M + cL"L and solving for the Hamiltonian, Hˆ ! = E! Hˆ - E ! = Hˆ - E c M! M + cL!L = 0 Chimica Inorganica 3 Left-multiplying by φM and φL yields the set of linear homogeneous equations, cM ! M Hˆ ! E ! M + cL ! M Hˆ ! E ! L = 0 cM ! L Hˆ ! E ! M + cL ! L Hˆ ! E ! L = 0 which furnishes the secular determinant, H MM ! E H ML ! ESML H ML ! ESML H LL ! E ( ) = EM ! E H ML ! ESML H ML ! ESML EL ! E =0 2 2 E 2 1 ! SML + E ( 2H ML SML ! H MM ! H LL ) + H MM H LL ! H ML =0 Chimica Inorganica 3 Hypothesis n. 1 SML = 0 H ML = 0 E1 = H MM ; E2 = H LL cM 1 = 1;cL1 = 0 cM 2 = 0;cL 2 = 1 Hypothesis n. 2 SML ! 0 i) H MM = H LL ii) H MM ! H LL Chimica Inorganica 3 i) H MM = H LL = ! ; H ML = ! ;SML = S ( ) E 2 1 ! S 2 + 2E ( ! S ! " ) + ! 2 ! " 2 = 0 E= ! (" S ! ! ) ± ! (! S ! " ) ± ( ! S ! " )2 ! (! 2 ! " 2 ) (1 ! S 2 ) (1 ! S ) 2 = ( ! S )2 + ! 2 ! 2 " S! ! ! 2 + " 2 + (! S )2 ! ( ! S )2 (1 + S ) (1 ! S ) = 2 " ! ( ! S ! " ) + !2 ! S" + ! 2 + (" S ) ! ( ! S ! " ) + (! S ! " ) ! (1 + S ) ! ! (1 + S ) ! ! " $ E2 = = = = (1 + S ) (1 ! S ) (1 + S ) (1 ! S ) (1 + S ) (1 ! S ) (1 ! S ) $ # 2 $ ! ( ! S ! " ) ! !2 ! S" + ! 2 + (" S ) ! ( ! S ! " ) ! (! S ! " ) ! (1 ! S ) + ! (1 ! S ) ! + " E = = = = $ 1 (1 + S ) (1 ! S ) (1 + S ) (1 ! S ) (1 + S ) (1 ! S ) (1 + S ) % Keep in mind that β < 0 and S > 0 Chimica Inorganica 3 ! !" 1 " E = ; c = !c = A2 B2 $ 2 (1 ! S ) 2 (1 ! S ) $ # 1 $ E1 = ! + " ; cA1 = cB1 = $ (1 + S ) 2 (1 + S ) % Chimica Inorganica 3 ! !" E2 = 1!S ( ) ε E1 = ! +" 1+S ( ψ2 ) ϕ1 cM 2 = !cL 2 = 1 2 (1 ! S ) ϕ2 ψ1 cM 1 = cL1 = 1 2 (1 + S ) Chimica Inorganica 3 ii) H MM ! H LL ψ2 ϕM H ML ! ESML EL ! E ! D 2 D !E 2 !B D 2 ϕL ψ1 H ML ! ESML H ML ! ESML = !B ! D = EM ! EL EM ! E !B D !E 2 =0 " D % "D % 2 ! ! E ! E $# '& $# '& = B 2 2 D2 + B 2 = E2 4 =0 Chimica Inorganica 3 D2 + B 2 = E2 4 H ML ! ESML = !B ψ2 E- B2 ! D ϕM E! = !B ! D = EM ! EL E+ D =0 E+ = B if D 2 if D 2 B2 D ψ1 ϕL B << D ( D2 D B2 2 =± 1+ 4 2 ! *± B + 4 2 D * E± = ) 2 2 " % " % D B D B *± 1 + 2 = ± + $# 2 D '& *+ 2 $# D 2 '& ( E! = ! H ML ! EM SML D B ! = EM ! 2 D "EML E+ = + H ML ! ELSML D B + = EL + 2 D "EML 2 2 ( ) ) 2 2 Chimica Inorganica 3 Maclaurin Expansion xn ! d n f $ f x =( # n& n=0 n! " dx % x=0 () ' 02/1698 – 14/06/1746 , 1 + x 1 x , / 2 f x = 1 + x 2 ) 1 + * . 1 + x 2 2x 1 + .. 1 + x 2 1! 2 0 x=0 2! .B2 2 x =4 2 D x2 4B 2 B2 f x )1+ = 1+ = 1+ 2 2 2! 2D 2 D () ( ) () 2 D2 D B2 2 4± B + =± 1+ 4 2 ) 4 2 4 D E± = 3 2 2 ! $ ! $ D B D B 4± 1 + 2 = ± + 2& #" 2 D &% 4 2 #" D % 5 2 ( ) + 12 + ( 2x 1 + x 2 2 ) + 23 / 2x 1 1 + ... 10 x=0 Chimica Inorganica 3 E- E! = EM H ( ! ML "EML H MM E+ = EL + ( H LL E+ ! EM SML H ML ! ELSML "EML ) ) 2 2 The Wolfsberg-Hemholz approximation provides a value for HML, defined as H ML = ( EM + EL ) SML !" * H ML 2 2 EM SML + EL SML ! EM SML ) EL SML ) ( ( = = "EML "EML !" E ( = 1.75 M + EL 2 )S ML 2 2 EM SML + EL SML ! EL SML ) EM SML ) ( ( = = "EML "EML Chimica Inorganica 3 The derivation highlights the following general rules for the construction of MO diagrams, (1) M—L atomic orbital mixing is proportional to the overlap of the metal and ligand orbital, i.e., SML corollary A: only orbitals of correct symmetry can mix and ∴ give a nonzero interaction energy (i.e. SML ≠ 0) corollary B: σ interactions typically give rise to larger interaction energies than those resulting from π interactions and π interactions are greater than δ interactions owing to more directional bonding along the series SML (σ) > SML (π) > SML (δ) (2) M–L atomic orbital mixing is inversely proportional to energy difference of mixing orbitals (i.e. ΔEML). Chimica Inorganica 3 Another issue of interest for the construction of MOs is, (3) The order of the EL and EM energy levels almost always is: σ(L) < π(L) < nd < (n+1)s < (n+1)p π*L depending on the nature of the ligand This energy ordering comes directly from Valence Orbital Ionization Energies (VOIE) of metal and main group atoms and PES spectra of molecular ligands. VOIE’s of metal atoms Atom: 3dn–14s → 3dn–24s 3dn–14s → 3dn–1 3dn–14p → 3dn–1 3d 4s 4p Sc 4.7 5.7 3.2 Ti 5.6 6.1 3.3 V 6.3 6.3 3.5 Cr 7.2 6.6 3.5 Mn 7.9 6.8 3.6 Fe 8.7 7.1 3.7 Co 9.4 7.3 3.8 Ni 10.0 7.6 3.8 Cu 10.7 7.7 4.0 Chimica Inorganica 3 VOIE’s of ligand atomic orbitals and PES spectra of selected ligands: Atom 1s H C N O F Si P S Br 13.6 2s 2p 19.4 25.6 32.3 40.2 10.6 13.2 15.8 18.6 3s 3p 14.9 18.8 20.7 7.7 10.1 11.6 4s 24.1 4p 12.5 Chimica Inorganica 3 PES energies of ligands are in eVs (note: a VOIE is simply the opposite of the ionization energy) Chimica Inorganica 3 General observations: (1) The s orbitals are generally too low in energy to participate in bonding (ΔEML(σ) is very large) (2) Filled p orbitals are the frontier orbitals, and they have VOIEs that place them below the metal orbitals (3) For molecular ligands, since the frontier orbitals comprise s and p orbitals, here too filled ligand orbitals have energies that are stabilized relative to the metal orbitals