TURFGRASSES: INVASIVE ALIEN SPECIES (IAS) AS EN EMERGING PROBLEM IN ITALY Potenza Giovanna2, Castronuovo D.1,Fascetti S.2, Perniola M.1, Miccolis V.1, Lovelli S.1, Candido V.1 1University of Basilicata, Department of Agriculture, Forestry and Environment, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy 2University of Basilicata, Department of Biology, Biotechnology and Agro-Forestry Protection, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy 1.INTRODUCTION In Italy, many species from foreign countries were introduced by some public and private institutions for economic development, recreational uses, or environmental improvements, such as erosion control, restoration and beautification of landscaping along the highways. In Italy as a result of a national research program supported by Ministry of Environment (MATTM) 1023 non native species (IAS) have been identified. Among them, turfgrasses species can be considered some of the most easily spread. The production and planting of turfgrasses are a fast developing business with a growing demand for easy to use materials that is often set up using non native species. This paper reports the first results of an Italian research project, financed by the Italian Ministry of Agriculture, named Mi.T.E.A.Med 'Miglioramento dei tappeti erbosi in ambiente mediterraneo: impiego di Mediterranean Study Area and Sites in Italy specie endemiche e ottimizzazione delle tecniche di impianto' (Improved turfgrass in Mediterranean environment: use of endemic species of plant and optimization techniques ). The Mi.T.E.A.Med research results suggest that Mediterranean adapted native grass species are worth investigating for turfgrass making as mono [e.g. Cynodon dactylon (L.) Pers.] and polycultures (e.g. Potentilla reptans L., Trifolium repens L., Lotus corniculatus L.) for their performance advantages and low resource use (especially water requirement). These species can be used as promising alternatives to conventional non-native turfgrasses. 2. MATERIALS AND METHODS The research is organized in two phases: the first one involves screening of the study area (Central and Southern Italy) to find suitable turfgrass species caracteristic of the Mediterranean Bioclimate; the second one focuses on innovative propagation and cultivation techniques, including hydroponic to optimize the 'mother plants' growth. During summer 2011 and winter 2012 samples of different macrotherm native species were collected in coastal and hilly especially on sandy substrates dry and/or salty (Tabb.1,2) Now there are being studied 29 monocots and 5 dicots and for each ecotypes some morphometrical aspects were mesured (Tab. 3). Medicago sp. Cynodon dactylon L. Lotu sp. Tab. 1 List of sites collected Paspalum paspaloides (Michx.) Scribner Potentilla reptans L. Trifolium repens L. 3. RESULTS and CONCLUSIONS REGION LOCALITY ALTITUDE m a.s.l. Coord WGS 84 EAST Coord WGS 84 NORTH LAZIO FERONIA 400 301916 4668620 MOLISE VASTO 0 478443 4661223 CAMPANIA ASCEA 0 515761 4438447 CALABRIA DIAMANTE 0 578877 4376962 BASILICATA POLICORO 0 642234 4441331 BASILICATA PISTICCI 0 656509 4461467 GINOSA 0 666275 At this stage biometric data (Tab. 4) on the Cynodon spp. characteristics have PUGLIA BASILICATA MONTESCAGLIOSO 200 650379 been used in PCA (Fig.2) in which the first dimension absorbs 56% of the total BASILICATA MATERA 200 640701 variability while the second 35%. Tab. 2 List of ecotypes collected The PCA therefore allows to discriminate the different Cynodon ecotypes primarily in function of root length ECOTYPES (l_root) and leaf lenght (l_leaf). natural Cynodon dactylon The next phase of the project expects to make growing tests in a controlled environmental conditions to natural Paspalum paspaloides confirm the biometric and morphological characteristics of the samples collected and carry out stress tests to natural Trifolium repens natural Poa pratensis identify ecotypes with low water requirements and salinity resistence. 4484012 4491214 4501305 NUMBER OF ACCESSIONS 25 3 1 1 Potentilla reptans 1 Lotus sp. 1 Medicago sp. 2 Tab.3 Database reporting plant morphological aspects Cod P_P2 length leaf mm width leaf mm internodes length root length root width mm stolon length mm average of stolones rooted 52 1,7 15 35 2 31,5 16 Tab. 4 Univariate statistic on biometric measure of Cynodon spp. N l_root w_root l_stolon n_interno des 25 25 25 25 w_leaf l_leaf average_internodes 25 25 25 Va 42,6 0,9 32 0 0 28,7 7 Min Vb 14 1,5 16 0 0 28,7 10 Max 180 3 62 44,2 4,1 130 19 Vc 42 3,2 15 57 1 34,8 18 Sum 1283,8 32 860,36 482,9 59,5 1365 255 Vd 18,6 3,9 15 15 Mean 19,316 2,38 54,6 10,2 Ve 27,7 2,5 13,3 70 1 30 11 Std. error 7,75117 0,155671 2,98506 2,07649 0,233095 7,20753 0,802081 Vf 31 3,6 7 14 0,5 32 19 Variance 1502,01 0,605833 222,764 107,796 1,35833 1298,71 16,0833 Stand. dev 38,7558 0,778353 14,9253 10,3825 1,16548 36,0377 4,0104 40 1 30 16,9 2,6 45 10 0 0 0 30 1 20,36 18 1R 67 1,7 16 40 2 59,7 7 2R 125 4,1 20 50 0,5 47,6 6 5R 125 4,1 20 50 0,5 50 5 8R 64 1,7 15 38 2 54 6 G1 120 2,9 20 45 0,5 G2 110 3 22 80 1 37 8 G3 0 0 0 30 2 33,2 10 3 42 1,3 35 60 1 59 5 34,4144 0 0 180 4 130 3 20 62 0,5 62 4 5 42 1,3 35 60 1 59 5 160 C_O1 56 2,8 23 34 2 22 12 140 C_O1bis 45 3,6 14 180 1 17 16 AZ_P5 39 3 10,6 37 2 34,7 10 Pa1 85 2,9 9 65 0,5 0 0 Pa3 60 3,8 15 19,8 1,5 19,5 10 Pa4 69,8 2,7 15 120 2 38,6 14 A1 46,5 2,6 23,3 50 2 25,2 11 A2 75 2,4 44,2 40 3 22,4 11 A3 32 1,9 16,9 30 1 18,8 12 A6 92 2 28,8 10 29,4 80 2 21,7 11 2,6 27 50 1 0 0 AZ_P2 7,61 4,5 0 70 1,5 18 12 AZ_P3 14,6 6,2 0 0 0 37,9 11 A4 Mg 12,1 10,53 0 80 1 23 12 A5 Mp 8,6 5,2 0 80 1 16 15 80 Y Vb Vc -60 A3l_stolon 2R Pa4 20 G1 5 C_O1 P_P2 -40 80 100 1R Vf A7 -60 l_root 40 -80 20 0 G3 C_O1bisn_internodes Vg w_leaf w_root 30 -40 A6 -20 20 40 60 AZ_P5 A2 average_internodes 4 A1 Ve -20 60 -100 Fig. 1 Distribution of morphologigal aspects l_leaf 25,2 3,8 7,49 100 l_stolon 1,5 72,6 120 n_stolon 35,2 A7 l_leaf 60 G28R 8 AZ_P1 4 40 w_root 43 Median 1,28 0 Component 2 (35% l_leaf) Vg 51,352 15 l_root 15 w_leaf 0,5 0 l_intern 22 0 Component 1 (56%l_root) Fig. 2 PCA on Cynodon spp. ecotypes 3