Politecnico di Torino Porto Institutional Repository [Other] Multiscale analysis of tunnel ventilation flows and fires Original Citation: Colella F., Rein G., Verda V., Borchiellini R., Torero J.L. (2010). Multiscale analysis of tunnel ventilation flows and fires. . Availability: This version is available at : http://porto.polito.it/2370566/ since: June 2010 Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions. html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. (Article begins on next page) GDR CNRS n GDR CNRS n°2864 2864 17‐18 June 2010 Multiscale analysis of tunnel u sca e a a ys s o u e ventilation flows and fires Tunnel Portal CFD 3D fire module 1-dimensional network Tunnel Portal Dr. Francesco Colella Dr Guillermo Rein Dr. Guillermo Rein Prof. Vittorio Verda Prof. Romano Borchiellini Prof. Jose L. Torero Prof. Jose L. Torero Dipartimento di Energetica – Politecnico di Torino 1-dimensional network Introduction ‐ Ventilation system The most widespread safety system in tunnels is the ventilation system ventilation system ¾Normal operating conditions • visibility i ibili • pollutant concentrations ¾Emergency conditions • Smoke management • safe evacuations fire fighting • fire fighting Dipartimento di Energetica – Politecnico di Torino Introduction ‐ Ventilation system The flow conditions within tunnels are dependent on the combined i fl influence of: f ¾Ventilation devices (axial and jet fans) ¾Tunnel layout (slopes) ll (l ) ¾Boundary conditions at the portals ¾Blockages within the domain ¾Fire size and Location ¾Comprehensive analysis has to consider the whole system y and not simply a part of it py p Dipartimento di Energetica – Politecnico di Torino 1D Network model ‐ characteristics ¾Fast simulations ¾Straightforward St i htf d definition d fi iti off boundary b d conditions diti ¾Predict the global behaviour of coupled systems ¾Well W ll established bli h d for f design d i purposes BUT ¾Need calibration constants ¾Provides only ballpark figures Dipartimento di Energetica – Politecnico di Torino CFD model ‐ characteristics ¾Detailed flow field representation ¾Well established for design verification BUT ¾Large g computational p time ¾Not affordable for long tunnels or for analysis of ventilation strategies ¾Still ll limited l d results l due d to uncertainties in modelling turbulence, combustion, radiation and py pyrolysis y of condensed fuels ¾“Acceptable” accuracy for global quantities (i.e. back‐layering distance) ¾“Poor” “ ” predictions di i off local l l flow fl field fi ld data d Dipartimento di Energetica – Politecnico di Torino Com mputattional time CFD vs. 1D computing time CFD models Accurate Is there Is there anything in y g between? 1D model Rough Tunnel Length Dipartimento di Energetica – Politecnico di Torino Multiscale model ‐ introduction Typical velocity contours in presence of jet fans 1D region T Tunnel lP Portal t l 1-dimensional network 3D region 1D region CFD model 1D model 1D model CFD 3D jet fan module Tunnel Portal 1-dimensional network 1D model Dipartimento di Energetica – Politecnico di Torino Multiscale model ‐ introduction Typical temperature contours in presence of fire 1D region 3D region 1D region 1D model CFD model 1D model Dipartimento di Energetica – Politecnico di Torino Multiscale – coupling procedure Physical decomposition of the domain 1D Regions 3D Regions ¾ Low velocity/temperature gradients ¾ High velocity/temperature gradients ¾ Mono‐dimensional models can be used ¾ CFD models must be adopted 1D region 3D region 1D region Dipartimento di Energetica – Politecnico di Torino Multiscale – coupling procedure •Based on Dirichlet‐Neumann methods •Use non‐overlapping domain decomposition •Neumann type boundary condition •Neumann‐type boundary condition applied to the CFD sub‐domain interfaces •Dirichlet‐type boundary condition applied to the 1D sub‐domain interfaces. •The model guarantees the continuity of average pressure, velocity and average pressure, velocity and temperature values at the 1D‐CFD interfaces x=a Ω3D Γa Ω1D Dipartimento di Energetica – Politecnico di Torino x Multiscale – coupling procedure Coupling stages 1 ‐ Full 1D model 2 CFD model near field 2 ‐ CFD model near field 3.a – 1D model far field K‐times 3.b ‐ CFD model near field Proceed to the next time step when some global convergence is reached Dipartimento di Energetica – Politecnico di Torino Multiscale ‐ characteristics ¾ Dramatic reduction of the computational time (up to 2 orders of magnitude for a 1.2 km long tunnel) ¾ As accuracy as CFD ¾ Successfully used for parametric studies BUT ¾ The placement of the 1D‐3D interfaces is an issue ¾ Higher set up time than CFD ¾ The CFD solver has to be accessed by the user during the iteration algorithm (i.e. compiled UDF for FLUENT) Dipartimento di Energetica – Politecnico di Torino Simulation of tunnel ventilation flows East & West Dartford tunnels (UK) 250m 1055m 130m Essex (north) Kent ((south)) 133m 1280m Colella, F., et al (2010), Tunnel. Underg. Space Technol. Colella F et al (2009) Building and Environment Dipartimento di Energetica – Politecnico di Torino 157m Simulation of tunnel ventilation flows East & West Dartford tunnels (UK) ¾≈1500 m long with hybrid ventilation system y ¾East tunnel diam 9.5 m (1980) ¾West tunnel diam 8.6 m (1963) ( ) ¾2 supply & extraction ventilation stations in the vicinity of the portals ¾28 jet fans in the West Tunnel ¾11 reversible jet fans in the East tunnell Colella, F., et al (2010), Tunnel. Underg. Space Technol. Colella F et al (2009), Building and Environment Dipartimento di Energetica – Politecnico di Torino Simulation of tunnel ventilation flows West Tunnel Jet fan near field 6 Multiscale arrangement 5 h [m m] h [m m] K+3 0 0 8 i-1 i-2 South portal 1 3 0 10 k Γi Far field 4 6 horizontal velocity [m/s] 10 0 j 6 10m 10 Γj 3D Sub‐domain Ω3D 3 Near field 0 2 j+1 j+2 4 6 t+1 horizontal velocity [m/s] 8 10 North portal N 1D Sub‐domain Ω1,1D 4 3 2 1 section 100 m 4 6 horizontal velocity [m/s] 2 t 5 100m 0 8 8 5 1 section 80 m 2 6 7 4 2 0 4 6 2 1 2 section 60m t+2 0 horizontal velocity [m/s] i 1D Sub‐domain Ω1,1D 4 section 40 m t+3 North Extraction shaft 1 0 2K+1 4 6 horizontal velocity [m/s] 5 2 South Extraction 1 shaft section 20 m Tunnel Reference Section 1 K+2 3 Tunnel Reference Section 2 h [m] 1 h [m] LD 2 2 0 4 L3D 3 h [m] h [[m] 4 3 6 5 5 4 ‐2 6 6 Far field 0 8 Dipartimento di Energetica – Politecnico di Torino 10 0 2 section 120 m 4 6 horizontal velocity [m/s] 8 10 Simulation of tunnel fire scenarios ¾1200 m long longitudinally ventilated ¾10 pairs of jet fans (50m spaced, 34 m/s discharge air velocity) ¾Fire located in the centre of the tunnel Fire located in the centre of the tunnel ¾Fire max HRR: from 10 MW to 100 MW Dipartimento di Energetica – Politecnico di Torino Simulation of tunnel fire scenarios ¾Ventilation scenarios ¾Scenario 1: 3 jet fan pairs ¾Scenario 2: 5 jet fan pairs j p ¾Scenario 3: 10 jet fan pairs Dipartimento di Energetica – Politecnico di Torino Simulation of tunnel fire scenarios Fire near field Multiscale arrangement North portal 1 K K+1 K+3 K+2 K+5 K+4 i t t+3 t+2 t+5 t+4 1D Sub‐domain Ω2,1D 1D Sub‐domain Ω1,1D Γi South portal t+1 i+1 L3D Γi+1 3D Sub‐domain Ω3D Far field Near field Dipartimento di Energetica – Politecnico di Torino Far field N Steady state results Comparison to full CFD solutions (30 MW fire) Scenario 1: 3 Jet fan pairs full CFD Multiscale Highly accurate results are achieved! Colella F et al Fire Technology (in press) Colella F., et al., Fire Technology, (in press). Dipartimento di Energetica – Politecnico di Torino Time dependent results Velocity HRR Deteection 30 MW 2 min 15 MW/min 4 min Dipartimento di Energetica – Politecnico di Torino time Time dependent results temperature: 300 320 340 360 380 400 330 6 320 310 4 2 0 50 100 x-velocity: 6 -0 . 6 150 200 250 Longitudinal coordinate 70 m back –layering -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1[m] 0.4 -0.4 0.6 1 4 2 0 50 100 150 0 200 Longitudinal coordinate [m] Dipartimento di Energetica – Politecnico di Torino 0 elevatio on [m] e elevation n [m] Multiscale results: 2 minutes 250 Time dependent results Multiscale results: 3 minutes S Scenario 1: 3 Jet fan pairs i 1 3J tf i 5 0 400 100 m back –layering 500 600 700 Scenario 2: 5 Jet fan pairs 5 70 m back –layering 0 400 500 600 700 Scenario 3: 10 Jet fan pairs 5 0 400 0 m back –layering 500≈ 0 m back –layering 600 Longitudinal coordinate [m] Dipartimento di Energetica – Politecnico di Torino 700 Time dependent results Multiscale results: 5 minutes S Scenario 1: 3 Jet fan pairs i 1 3J tf i 5 0 400 500 600 700 800 900 1000 1100 1200 Scenario 2: 5 Jet fan pairs 5 0 400 500 600 700 800 900 1000 1100 1200 Scenario 3: 10 Jet fan pairs 5 0 400 500 600 700 800 900 Dipartimento di Energetica – Politecnico di Torino 1000 1100 1200 Conclusions (1) Several numerical techniques have been used to deal with ventilation and fire induced flows in tunnels deal with ventilation and fire induced flows in tunnels • 1D and CFD models • Multiscale models ¾ Dramatic reduction of the computational time (up to 2 orders of magnitude) ¾ As accurate as full CFD ¾ Results agree well with experimental measurements ¾ Allow for full coupling p g of fire and ventilation system y and complete p analysis of ventilation system response ¾ Well suited to conduct parametrical studies, sensitivity analysis, d d studies t di and d Detection/Activation/propagation D t ti /A ti ti / ti problems bl redundancy Dipartimento di Energetica – Politecnico di Torino Conclusions (2) Evaluation of Fire throttling effect ((…. the additional fire induced pressure losses due to sudden air expansion, higher p p , g velocities, buoyant effects and localized losses in the plume region. …. amplified for larger fires and longer tunnels…) 6 # jett fan pairs •Require R i a global l b l simulation i l i of tunnel and ventilation system to be evaluated 5 4 •Can be significant for large fires (>100 MW) and long tunnels! 3 •The number of jet fan pairs required to achieve critical velocity is highly dependent of the fire size 1 2 Fire size [MW] 0 0 20 Dipartimento di Energetica – Politecnico di Torino 40 60 80 100 120 Conclusions (3) Evaluation of the ventilation system response (Time required to remove back‐layering) elapsed time from fire outbreaak [s] 400 Scenarios 1, 2, 3; TD=2min Detection time 2.5 min Scenarios 4 5 6; TD=2 5min Scenarios 4, 5, 6; TD=2.5min Detection time 2.0 min Scenarios 7, 8, 9; TD=1.5min 350 300 Detection time 1.5 min 250 200 150 100 50 0 2 3 4 5 6 7 8 9 10 # active jet fan pairs 11 12 13 14 Significant impact of detection time on ventilation system response! Dipartimento di Energetica – Politecnico di Torino List of publications Any questions? yq Dipartimento di Energetica – Politecnico di Torino Tunnel ventilation models ‐ Network Dipartimento di Energetica – Politecnico di Torino Modelling techniques – 1D Network ¾Computational domain splitted in branches and nodes ¾Mass conservation in each node ¾Momentum conservation in each branch ¾Constitutive equations for components • Fire Modelled as source of heat ((variable in time)) • Fans modelled using a fan characteristic curve Dipartimento di Energetica – Politecnico di Torino Modelling techniques – 1D Network Jet fan characteristic curve 12 pressure rise [pa] 10 8 6 4 2 avrg velocity [m/s] 0 ‐2 0 2 4 6 8 ‐4 ‐6 Dipartimento di Energetica – Politecnico di Torino 10 12 Multiscale – coupling procedure Time step: Time step: N N Time step: N+1 Multiscale iterations ‐ Multiscale iterations K Time step: N+1 3.50 0.000 [kg/s] ‐0.010 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 3.00 ‐0.020 ‐0.030 [Pa] 2.50 Total pressure at inlet 2 00 2.00 ‐0.040 Introduction: three‐stage coupling ‐0.050 Mass flow rate at inlet Mass flow rate at inlet ‐0.060 1.50 1.00 ‐0.070 0.50 ‐0.080 0.00 Dipartimento di Energetica – Politecnico di Torino