Superdiffusion of magnetic elements in the quiet Sun Dr. Fabio Giannattasio INAF - Osservatorio Astronomico di Roma email: [email protected] 2nd Solarnet Meeting Palermo, February 2-5, 2015 Motivations Why are we interested in small-scale magnetic fields (magnetic elements, MEs)? ● Ubiquitous on the solar surface (Trujillo Bueno et al. 2004) ● Host magnetohydrodynamics waves → Talk of Stangalini ● Dynamic properties of MEs → Evolution and scales of organization (De Rosa & Toomre 2004; Del Moro et al. 2007; Martìnez Gonzàlez & Bellot Rubio 2009; Ishikawa & Tsuneta 2009; Manso Sainz et al. 2011; Abramenko et al. 2011; Giannattasio 2013, 2014a) ● Recover the rate of interaction → Magnetic reconnection → Talk of Del Moro ● Motion of MEs → Dynamics of the underlying flow (Lepreti et al. 2012, Giannattasio 2014b) Motivations Why are we interested in small-scale magnetic fields (magnetic elements, MEs)? ● Ubiquitous on the solar surface (Trujillo Bueno et al. 2004) ● Host magnetohydrodynamics waves → Talk of Stangalini ● Dynamic properties of MEs → Evolution and scales of organization (De Rosa & Toomre 2004; Del Moro et al. 2007; Martìnez Gonzàlez & Bellot Rubio 2009; Ishikawa & Tsuneta 2009; Manso Sainz et al. 2011; Abramenko et al. 2011; Giannattasio 2013, 2014a) ● Recover the rate of interaction → Magnetic reconnection → Talk of Del Moro ● Motion of MEs → Dynamics of the underlying flow (Lepreti et al. 2012, Giannattasio 2014b) Dynamics of magnetic elements Passive transport B FB Fd >> FB Fd : drag force FB: magnetic force Fd ● Tracking MEs = tracking photospheric plasma motions ● Motion of MEs may be described in terms of a diffusion process. Dynamics of magnetic elements Random Walk Dynamics of magnetic elements displacement spectrum γ: efficiency of diffusion γ=1 random walk (normal diffusion) γ≠1 anomalous diffusion γ>1 superdiffusion γ<1 subdiffusion K = K (s , τ) = d (< Δs2 >) / dτ Example of superdiffusion Dynamics of magnetic elements Displacement spectrum ← Tracking MEs G-band images Magnetograms - Berger et al. (1998) - Hagenaar et al. (1999) - Cadavid et al. (1998, 1999) - Manso Sainz et al. (2011) - Lawrence et al. (2001) - Sanchez Almeida et al. (2010) - Abramenko et al. (2011) Dynamics of magnetic elements Previous studies in literature ● Superdiffusive regime γ ≥ 1 changing with the scales (e.g., Manso Sainz et al. 2011, Abramenko et al. 2011) ● Very different values of diffusivity Observational limitations ● Relatively small range of scales investigated ● Low number of tracked MEs Dynamics of magnetic elements The data set ● Hinode quiet Sun magnetograms ● FoV 51 x 53 Mm2 ● Spatial resolution 0”.3 ● 25-hr without interruption ● 90-s cadence - seeing-free “direct” magnetic field detection - wide range of spatial scales high statistics - wide range of temporal scales Dynamics of magnetic elements The data set ● Hinode quiet Sun magnetograms ● FoV 51 x 53 Mm2 ● Spatial resolution 0”.3 ● 25-hr without interruption ● 90-s cadence - seeing-free “direct” magnetic field detection - wide range of spatial scales high statistics - wide range of temporal scales Dynamics of magnetic elements The data set ● Hinode quiet Sun magnetograms ● FoV 51 x 53 Mm2 ● Spatial resolution 0”.3 ● 25-hr without interruption ● 90-s cadence - seeing-free “direct” magnetic field detection - wide range of spatial scales high statistics - wide range of temporal scales Dynamics of magnetic elements Tracking MEs (Del Moro 2004) 20145 MEs tracked Dynamics of magnetic elements Displacement spectrum in all the FoV < Δr2 > ∝ τγ ● ● Giannattasio et al. 2013, ApJ 770 L36 superdiffusive regime - 2 slopes, changepoint at ~2000 s - augmented magnetic inertia at longer time-scales - velocity field renewal increasing diffusivity - cooperation of small-scale fields allows field aggregation Dynamics of magnetic elements Internetwork VS Network NW IN Dynamics of magnetic elements Displacement spectrum: Internetwork (IN) VS Network (NW) ● IN spectrum → single slope ● NW spectrum → 2 slopes, changepoint at ~600 s Comparison with all FoV → at small (large) scales IN (NW) MEs dominate the field dynamics ● IN → increasing diffusivity (aggregation at small scales) ● NW → lower and lower diffusivity Giannattasio et al. 2014, ApJ 788 137 Dynamics of magnetic elements Main conclusions ● Displacement spectrum in all FoV → superdiffusion with 2 slopes → a changing regime - augmented inertia renewal of the underlying velocity field ● IN → MEs transported efficiently at all scales ● NW → - ● Weak-field regime in IN and strong-field regime (reduced convection) in NW (Cattaneo et al. 2003) stronger flux lowers the diffusivity at smaller scales MEs in velocity sinks → after the decorrelation time MEs move according the underlying velocity pattern along more random paths Thank you References Abramenko et al. 2011, ApJ, 743, 133 Manso Sainz et al. 2011, A&A, 531, L9 Berger et al. 1998, ApJ, 506, 439 Martìnez Gonzàlez & Bellot Rubio 2009, ApJ, 700, 1391 Cadavid et al. 1998, ApJ, 509, 918 Sanchez Almeida et al. 2010, ApJL, 715, L26 Cadavid et al. 1999, ApJ, 521, 844 Trujillo Bueno et al. 2004, Nature, 430, 326 Cattaneo et al. 2003, ApJ, 588, 1183 Del Moro 2004, A&A, 428, 1007 Del Moro et al. 2007, A&A, 472, 599 De Rosa & Toomre 2004, ApJ, 616, 1242 Giannattasio et al. 2013, ApJL, 770, L36 Giannattasio et al. 2014a, ApJ, 788, 137 Giannattasio et al. 2014b, A&A, 569, A121 Hagenaar et al. 1999, ApJ, 511, 932 Ishikawa & Tsuneta 2009, A&A, 495, 607 Lawrence et al. 2001, PRL, 86, 5894 Lepreti et al. 2012, ApJ, 759, L17