La didattica laboratoriale, la bottega artigiana … e i suoi ingredienti … Gli strumenti Il sapere istituzionale sull’argomento e la problematica storico epistemologica L’attenzione agli aspetti cognitivi Le indicazioni curricolari, il contesto in cui si opera e le risorse disponibili Le attività e la didattica lunga Quanti esempi di didattica laboratoriale! La fatica, ma non la noia La discussione per la costruzione di una cultura dell’argomentazione in classe La giustificazione delle azioni e delle strategie messe in opera per risolvere problemi mediante argomentazioni pertinenti e coerenti è una attività centrale nella didattica laboratoriale in matematica e, più in generale, è un obiettivo importante della formazione intellettuale di una persona. Il “documento di Carcare” Che cos’è un’argomentazione? La definizione proposta dal filosofo del linguaggio Toulmin negli anni '50 viene oggi utilizzata da diversi ricercatori nell'ambito della didattica della matematica perché offre un modello che "copre" tutti i tipi di argomentazione usualmente utilizzati in matematica e inoltre stabilisce dei collegamenti con molti tipi di argomentazione utilizzati in altri ambiti e nella vita di tutti i giorni. Toulmin considera una argomentazione come costituita da uno o più "passi di ragionamento" concatenati; i passi di ragionamento sono a loro volta costituiti da un dato ("Data"), da una conclusione ("Conclusion") e da un'inferenza che dal dato conduce alla conclusione grazie a una "regola di garanzia" ("Warrant") che a sua volta può essere sostenuta da una "conoscenza di supporto" ("Backing") (ad esempio un sistema di affermazioni appartenenti a una teoria accreditata). Il sig. Piero era a Roma alle 8, e l'assassinio è stato commesso a Londra alle 9, quindi occorre cercare un altro colpevole PRIMO PASSO: Il sig. Piero era a Roma alle 8 (parte del dato generale) quindi non poteva essere a Londra alle 9 (conclusione parziale) perchè il tempo minimo per arrivare da Roma a Londra è di due ore (warrant) tenuto conto dei mezzi di trasporto disponibili (backing); SECONDO PASSO: Il sig. Piero non poteva essere a Londra alle 9 (dato ricavato dalla conclusione del passo precedente), quando è stato commesso l'assassinio (parte del dato generale), quindi occorre cercare un altro colpevole (conclusione generale) in quanto il sig. Piero non può essere l'assassino (warrant). È necessario che chi argomenta: -possieda sufficienti conoscenze sull'oggetto dell'argomentazione: esse possono essere "dati" di partenza, ovvero conoscenze che sostengono i passi di ragionamento; in assenza di tali conoscenze l'argomentazione "gira a vuoto" o si inceppa; - sappia gestire sul terreno logico e linguistico i passi di ragionamento e la loro concatenazione: uso corretto dei connettivi linguistici che esprimono e permettono le inferenze, padronanza logica delle concatenazioni linguistiche dei passi di ragionamento … -possieda modelli di argomentazione corrispondenti a diversi tipi di giustificazione (deduttiva: ad esempio la dimostrazione nell'ambito di una teoria, in matematica; l’uso di esempi e contro-esempi; abduzioni, induzioni, analogie…). - abbia interiorizzato i valori culturali insiti nell'argomentazione, e sappia e voglia quindi scegliere la via dell'argomentazione come modalità privilegiata per fare valere le proprie ragioni, per giustificare le sue scelte o per assicurare la conformità del proprio prodotto (ad esempio, un enunciato in matematica) agli standard culturali della comunità di appartenenza. La prima comndizione (le “conoscenze”) e la terza (modelli di argomentazione) rinviano al settore culturale a cui si riferisce l'argomentazione; la seconda (uso adeguato dei connettivi linguistici) comporta lo sviluppo di abilità e competenze linguistiche trasversali ai diversi settori culturali; la quarta (interiorizzazione dei valori culturali propri dell’argomentazione) richiede una estesa pratica e una forte valorizzazione ambientale. Il soddisfacimento della seconda e della quarta condizione appare non scontato, non facile (soprattutto quando manchi un adeguato retroterra culturale famigliare) e da curare sul piano culturale e didattico con una progettazione a lungo termine e di ampio respiro a partire dalla scuola primaria (o addirittura dalla scuola dell'infanzia). Alcuni "principi" che dovrebbero essere seguiti per lo sviluppo in verticale di attività sull'argomentazione. a) Le attività sull'argomentazione non possono essere confinate in uno "spazio" ristretto dell'offerta formativa; l'argomentare dovrebbe diventare una prestazione che si inserisce in molte attività e in ambiti disciplinari diversi. b) Le richieste di spiegare il perché, di giustificare le risposte vanno poste sistematicamente agli studenti, almeno a partire dalla prima classe della scuola elementare. c) Cruciale appare una "pedagogia dell'errore" in cui l'errore viene vissuto dagli allievi come un rischio inevitabile quando si cercano strade nuove, quando si formulano ipotesi, quando si valutano situazioni. La riflessione sulle possibili cause dell'errore e sui suoi effetti, la ricerca dei modi per superarlo o per evitarlo dovrebbero sostituire la "sanzione" dell'errore come unico sbocco del processo valutativo dell'insegnante. d) L'attenzione alla pertinenza e all’efficacia del linguaggio verbale dovrebbe essere oggetto di impegno da parte di tutti gli insegnanti a tutti i livelli scolastici. … e l’insegnante osserva, suggerisce, motiva, gratifica, presta le lenti della teoria, sistema … MA ASCOLTA l’esperienza dei bambini È garante dei processi di costruzione e condivisione del sapere in classe… MA ASCOLTA 14 ESEMPI Scuola dell’infanzia (5 anni) Le regole di comportamento Consegne 1- Disegna la scena del film su Pippicalzelunghe che preferisci 2- Ripensando alle due storie viste, dite quale vi è piaciuta di più e quale comportamento di Pippi vi è piaciuto di più o non vi è piaciuto e perchè. 3- Vi ricordate che giorni fa abbiamo parlato di Pippi, del fatto che non sempre rispetta le regole, in casa e fuori … come succede spesso anche a noi a scuola, …, a tavola. Ma, secondo voi, che cosa sono queste regole? 4- Come ci siamo comportati, secondo voi, in questo anno scolastico e che cosa vorreste dire a Pippi che ci ha tenuto compagnia per tutto l’anno? Scuola dell’infanzia (5 anni) Le regole di comportamento Modalità I bambini vedono insieme due espisodi della di gestione storia di Pippi, cui segue la consegna 1, unica attività individuale. La consegna 2 porta l’attenzione sul comportamento di Pippi con l’obiettivo di suggerire ai bambini di confrontarlo con il proprio. La consegna 3 spinge i bambini a chiedersi e proporre ai compagni il significato di “regola”. La consegna 4 guida a un’analisi dei possibili comportamenti in relazione alle regole. Scuola dell’infanzia (5 anni) Le regole di comportamento Natura e • Il tema delle regole induce a forme di livello argomentazione elevate, vicine a quelle della dell’argomentazione matematica. argomen • Quando l’insegnante chiede: tazione “Perché sono importanti le regole?” abbiamo l’esplicitazione di due perchè di diversa natura: il primo è più astratto e rinvia a un sistema di regole condivise (le maestre non danno punti…); l’altro più concreto, legato a leggi fisiche e quindi ti tipo causale (con il caos non ci si riesce a riposare). Scuola dell’infanzia (5 anni) Le regole di comportamento Possibilità articolazione verticale • L’argomento è fondamentale ad ogni livello del percorso scolastico e oltre: dalle regole che governano i giochi e i rapporti sociali a quelle della grammatica, della matematica, etc.. Scuola dell’infanzia – prima elementare La linea dei numeri Consegne 1. E’ importante per te avere la linea dei numeri? (individuale) 2. A che cosa serve la linea dei numeri? (discussione) 3. Oggi è il 24 aprile. L’8 maggio sarà la festa della mamma. Quanti giorni mancano? Spiego il mio ragionamento (individuale) 4. Oggi tre bambini sono assenti. Sai dirmi quanti sono presenti a scuola? (individuale) Scuola dell’infanzia – prima elementare La linea dei numeri Modalità di gestione Sulla parete dell’aula, sopra il calendario, è appesa una linea dei numeri da 1 a 31. Una mattina la linea dei numeri non c’è più: “E’ importante per te avere la linea dei numeri?” Dalle risposte individuali emerge che è uno strumento importante perché ci AIUTA. Si va a riprendela: “In che cosa ci aiuta?” Durante la discussione ogni volta che i bambini giungono a una conclusione, l’insegnante riassume e chiarisce il pensiero del bambino Scuola dell’infanzia – prima elementare La linea dei numeri Natura e livello • Le consegne 1 e 2 spingono i bambini a dell’argomenta motivare l’utilità della linea dei numeri a zione partire della riflessione sulle sue funzioni, che i bambini conoscono bene perché le sperimentano tutti i giorni. Hanno argomenti per sostenere le loro affermazioni, producendo esempi specifici. • Nelle consegne 3 e 4 i bambini si appoggiano per rispondere al calendario e alla linea dei numeri e ciò fornisce al numero una semantica familiare, che permette di risolvere anche problemi complessi per quell’età. Scuola dell’infanzia – prima elementare La linea dei numeri Possibilità articolazione verticale Il collegamento con le attività matematiche della classe prima è assolutamente naturale e in continuità, almeno SE l’approccio al numero non è dicarattere insiemistico (o, peggio, di tipo esclusivamente insiemistico). Un approccio prevalentemente insiemistico, per bambini abituati a muoversi con disinvoltura sulla linea dei numeri, può risultare rischioso e portatore di frustrazioni che rischiano di segnare l’esperienza con la matematica. Il suggerimento implicito è che il senso ordinale del numero possa essere utilizzato come veicoli per altri sensi. Classe prima elementare Oggi fa più caldo o più freddo di ieri? Consegne 1. Attività iniziale individuale “Secondo te 2. 3. 4. 5. fa più caldo o più freddo di ieri?” Discussione collettiva alle ipotesi fatte individualmente Osservazione e descrizione del termometro Perché abbiamo deciso di usare il termometro? (individuale) Riflessioni conclusive (scelta di due elaborati o costruzione di un testo a cura della maestra, ma a partire ad quelli prodotti dai bambini) Classe prima elementare Oggi fa più caldo o più freddo di ieri? Modalità di gestione L’attività 1 è svolta in modalità di interazione bambino - insegnante (con registrazione e trascrizione) Nell’attività 2 (discussione collettiva) si vuole fare riflettere gli alunni sulle discrepanze emerse dalle risposte date da ciascuno in modo da far emergere l’esigenza dell’uso di un termometro per misurare la temperatura. L’attività 3 si divide in tre momenti: a) libera osservazione del termometro da parte dei bambini; b) condivisione delle osservazioni fatte; c) stesura di un testo descrittivo. Nell’attività 4 ciascun bambino deve provare a spiegare all’insegnante e ai compagni “perché abbiamo deciso di usare il termometro” Classi terze e quarte Le unità in numeri a più cifre Consegne 1. Marco dice che nel numero 728 ci sono 8 unità, mentre Sara afferma che ci sono 728 unità. Chi dei due ha ragione? Perché? 2. Si propongono alla lettura alcuni dei testi prodotti (scelti dall’insegnante) e si chiede: tutti hanno scritto le stesse cose o ci sono opinioni diverse? Quale dei testi contiene la stessa motivazione del tuo testo? Perché? 3. Scriviamo insieme una motivazione completa Classi terze e quarte Le unità in numeri a più cifre Gestione Inizialmente i bambini vengono invitati a entrare nel problema attraverso un esempio concreto, con la produzione di un testo individuale. La seconda attività porta i bambini a confrontare la propria risposta con quelle di altri bambini. La terza attività vede l’intervento dell’adulto (la maestra) che aiuta a costruire un testo collettivo Classi terze e quarte Le unità in numeri a più cifre Natura e livello della argomenta zione Se si pensa alla scrittura del numero verrebbe da dire che le unità sono 8; se, invece, si pensa al concetto di numero, le unità sono 728. In gioco c’è la differenza tra concetto e rappresentazione. Dagli interventi dei bambini si vede come molti di essi si appoggino a un approccio insiemistico al numero. Per esempio: “nel 728 ci sono 8 unità; noi sappiamo che per passare alle decine ci vogliono 10 unità, quindi ci può stare un numero minore di 10 e 728 non ci possono stare. Ma se parliamo della realtà sì, perché io posso avere 728 caramelle in tasca”. Classi terze e quarte Le unità in numeri a più cifre Natura e livello della argomenta zione Altra argomentazione : “Potrebbe [condizionale ipotetico] avere ragione Marco, perché [esplicativo] le unità sciolte sono 8, ma [avversativo che nega la condizione] il numero non è 8, ma 728, quindi [conseguenza logica] ha ragione Sara, perché [esplicativo] sì ci sono 8 unità, ma anche 72 decine sono unià, l’unica cosa che 8 sono unità sciolte e 72 raggruppate, 2 sono raggruppate in decine e 7 in centinaia. Quindi [deduzione conclusiva] ha ragione Sara, le unità sono 728”. Classi terze e quarte Confrontare numeri interi Consegne 1. Scrivi un testo spiegando come fai a stabilire, dati due numeri con lo stesso numero di cifre (per esempio due numeri di tre cifre), qual è il maggiore? 2. Confronto fra due testi scelti dall’insegnante. 3. Discussione guidata. 4. Testo individuale su ciò che si è imparato nella discussione. Classi terze e quarte Le unità in numeri a più cifre Gestione La prima produzione individuale permette all’insegnante di comprendere a che punto sono i bambini e ai bambini di entrare nel problema. La selezione di acuni testi offre ai bambini la possibilità di fare un confronto fra le diverse produzioni. Nella discussione guidata è l’insegnante a dare la parola in modo da permettere ai bambini più timidi e lenti di intervenire per primi e di avere sempre la parola quando la chiedono. Inoltre l’insegnante dovrebbe fare da eco alle idee più interessanti. La produzione finale è un ripensamento personale e permette all’insegnante di individuare la comprensione dei bambini. Classi terze e quarte Le unità in numeri a più cifre Natura e livello della argomenta zione Questqa consegna favorisce poco l’argomentazione, essendo più procedurale. I bambini potrebbero esprimere il perché deklle proprie scelte, ma non lo fanno e non è qui ilcaso di insistere: il passaggio importante è quello verso la generalizzazione dai casi particolari. Un percorso successivo potrebbe essere quello del confronto fra numeri decimali, che nasconde ostacoli epistemologici notevoli. Classi terze e quarte Aggiungi 1 Situazione Pensate a otto numeri. Rappresentate sul vostro foglio l’insieme A formato da questi otto numeri. Ora formate un secondo insieme B di numeri aggiungendo 1 a ciascuno dei numeri dell’insieme A. Problema Come cambiano, in seguito a questa operazione, le proprietà di ciascuno dei numeri dell’insieme A? Giustificate le vostre risposte. Il valore del denaro nel tempo. Studenti di scuola secondaria di secondo grado che assistono studenti di scuola elementare: un tentativo di recupero scolastico a.s. 2005-2006 Domingo Paola http://cieaem.net/DVD/valore_del_denaro.htm Schema progetto Il valore del denaro nel tempo (Percorso con la scuola elementare, classi V A e VB; studenti del liceo con ruolo di tutor). Aspetti motivazionali Interviste a genitori e nonni, ricerche su internet e sui libri per individuare fatti importanti dal 1960 al 2005 (locali e nazionali). Aspetti concettuali Cambiamenti del valore del denaro nel tempo (variazione del potere d’acquisto del denaro). Concetti matematici interessati 1. Rappresentazioni in scala, rapporti e percentuali. 2. Variazioni relative e assolute. 3. Piano cartesiano. 4. Grafico che rappresenta la variazione di una grandezza nel tempo. 5. Lettura di grafici. 6. Pendenza di un segmento. 7. Uso consapevole degli strumenti automatici di calcolo. Fasi del lavoro a) costruzione di una striscia del tempo e, più in generale, attività aventi l'obiettivo di creare contesto, ossia di offrire alle bambine e ai bambini l'occasione di poter cercare e trovare un "senso" storico - sociale ai dati numerici che avrebbero manipolato; b) elaborazione e rappresentazione dei dati rilevati (anche con l’aiuto delle risorse messe a disposizione da un foglio elettronico); c) scelta di un paniere e introduzione del concetto di potere di acquisto del denaro. Analisi, alla luce di tale concetto, dei dati prima elaborati; c) lettura di un testo per adulti avente come obiettivo quello di proporre alcune riflessioni di carattere sociale sull'evoluzione nel tempo del potere di acquisto del denaro, ma anche sull'evoluzione dei salari e su quella dei "bisogni indotti“. Esempi di attività Striscia del tempo Inizialmente si è discusso con i bambini sulla tipologia delle notizie da riportare sulla linea del tempo. Attraverso la lettura di notizie-tipo, si è deciso di classificarle in economiche, storico-geografiche, sociali, sportive, regionali. Le notizie di natura politica sono state inserite in quelle storico/geografiche perché difficilmente classificabili da parte dei bambini. E' stata quindi costruita una legenda con i loghi relativi alle varie tipologie di notizia. Gli alunni hanno lavorato in piccoli gruppi, ognuno dei quali si è occupato di un anno o di un quinquennio ( in particolare per le notizie regionali ) utilizzando le diverse fonti messe loro a disposizione. Alcune tipologie di risposta 1. Nel 2006, sia i prezzi che lo stipendio sono molto più alti rispetto agli altri anni. 2. Le auto costano sempre più dello stipendio di un operaio. 3. Per acquistare un televisore, sia nel 1955 che nel 1965, occorreva più di uno stipendio, mentre nel 2006 con uno stipendio si potrebbero acquistare 5 televisori. 4. Il biglietto dell’autobus e il quotidiano mantengono lo stesso prezzo. 5. Tutti i prodotti dal 1955 al 1965, aumentano di prezzo, tranne zucchero, benzina e televisori. Elaborazione dati 6,00 5,00 4,00 3,00 Serie1 2,00 1,00 0,00 1940 1950 1960 1970 1980 1990 2000 2010 Emergenza matematica? Certo, ma si può affrontare!