Ecosystems and global services : an outlook on forest and mountain region Riccardo Valentini Università della Tuscia Dipartimento di Scienze dell’Ambiente Forestale e delle sue Risorse [email protected] http://gaia.agraria.unitus.it Welcome in the Anthropocene ! CO2 CH4 N2O 2007 un anno per il Clima 4° Rapporto Intergovernativo sui Cambiamenti Climatici Premio Nobel per la Pace Un film sul clima Artico si scioglie Bush torna su i suoi passi ? Il delfino Baiji è estinto What was unique? Ecosystem services Provisioning Regulating Cultural Goods produced or provided by ecosystems Benefits obtained from regulation of ecosystem processes Non-material benefits from ecosystems Photo credits (left to right, top to bottom): Purdue University, WomenAid.org, LSUP, NASA, unknown, CEH Wallingford, unknown, W. Reid, Staffan Widstrand Source: NASA Global C Budget Atmospheric accumulation rate 3.2 GtC per year 1990s Atmosphere Surface biosphere 6.3 2.2 F Fuel, Land-Use Cement Change Fast process (1 – 102 days) Gruber et al 2003 , SCOPE project 2.9 Land Uptake 2.4 Ocean Uptake Slow process (103 – 104 days) 4.0 2.0 21 23 12 22 15 -1 -1 NEE (t C ha y ) 0.0 18 5 -2.0 7 -4.0 25 17 23 24 6 3 16 13 9 8 2a 4 10 14 11 -6.0 1 20 2 19 -8.0 -10.0 35 40 45 50 55 60 65 70 Latitude (°N) Valentini, Dolman, Matteucci et al. Nature 2000 VULNERABILITY OF BIOSPHERE (feed-backs with carbon cycle) Coupled carbonclimate models GtCO2/yr 140 CO2-equivalent emissions 120 100 80 60 Baseline A2 BIOSPHERE 40 20 IMAGE S650e IMAGE S550e 0 1970 1990 2010 2030 2050 2070 2090 Source or sink ? Vulnerability of Carbon Pools Carbon in tropical vegetation: 340 Pg Carbon in wetlands: 450 PgC Carbon in frozen soils: 400 PgC • Risk over the coming century of up to 200 ppm of atmospheric CO2 • Not included in most climate simulations. Gruber et al. 2004 ……BIODIVERSITA’ IN CIFRE…… 1,7 MILIONI DI SPECIE CONOSCIUTE 15 MILIONI SPECIE STIMATE SULLA TERRA 90% DELLE SPECIE SCONOSCIUTE Change in Species Diversity Number per Thousand Species Number of Species 10000 140 120 1000 100 100 100 to 1000fold increase North America Europe 80 60 10 40 1 20 0,1 0 Fossil Recent Future 1790-1819 1820-1849 1850-1879 1880-1909 1910-1939 1940-1969 1970-1999 1790 1900 2000 Extinctions Homogenization (per thousand years) (e.g. growth in marine species introductions) Source: Millennium Ecosystem Assessment The experimental site is located in a farm (Malga Arpaco) at 1699 m a.s.l. Mean annual temperature: 5 °C Total annual rainfall: 1200 mm Soil type: Typic Hapludalfs, fine loamy (FAO) Ecosystem type: alpine semi-natural grassland Ecosystem management: extensive management, pasture from Jun to Sep Period of EC measurements: 2003-2007 Eddy Covariance type: Metek USA-1, Li-cor 7500 Tower height: 2 m N2O emission and CH4 uptake was evaluated fortnightly, during 2003 and 2004 pasture season, using diffusion chambers. Gas samples conserved in vacuum vials were analysed through gaschromatography technique. For the N2O: ECD detector at 320°C; for the separation a capillary column Cromosob 1010 at 140°C was used, with a flux of helium at 30 kPa. For the CH4: FID detector at 180°C; for the separation a column 4m x ¼’’ OD Porapak q 80/100 MESH at 30° was used. The human foot print Data Magnani et al., 2007 Luyssaert et al., submitted Extreme climate events or disturbances have a strong effect on biosphere-astmosphere exchanges Annual mean 1850-2000: 35 M m3 of forest wood damaged by natural disturbances in Europe. 53% wind throw 16% fire 16% biotic (insects) 3% snow 5% other abiotic Tatra Experiment CarboEurope Mean day on monthly base 10 0 EX IF NEX -5 -10 October September August July June May April Marchr Februaryr January December -25 November -20 October -15 September Fc [mol m-2 s-1] 5 QUALCHE ESEMPIO Vannini, Anselmi et al. 2007 Progetto CarboItaly Malattie epidemiche causate da organismi introdotti 5 0 um P. c ac t or ic ol a ci tr P. ca m bi vo ra P. ci nn am om i -5 P. Phythopthora cinnammomi, uno degli agenti causali del mal dell’inchiostro del castagno, è attualmente ristretta a quelle aree in cui la temperatura minima non scende al di sotto di 0°C (vedi grafico a destra). Un aumento delle temperature minime di 24°C, teoricamente verificabile nell’arco di 20-40 anni, porterebbe questa specie ad espandere il suo areale alle zone castanicole dove sono oggi presenti specie di Phytophthora meno aggressive quali P. cambivora, P. cactorum e P. citricola La spiccata polifagia di P. cinnamomi, permetterebbe inoltre al patogeno di colonizzare nuovi ospiti precedentemente non raggiungibili per limiti climatici. Temperature °C 10 QUALCHE ESEMPIO Vannini, Anselmi et al. 2007 Progetto CarboItaly Malattie endemiche causate da organismi nativi 35 % d'isolabilamento Biscogniauxia mediterranea, è un fungo Ascomycota che vive comunemente come endofita indifferente all’interno dei tessuti corticali e legnosi di querce mediterranee. Durante eventi particolarmente siccitosi, quando il potenziale idrico fogliare minimo dell’ospite raggiunge valori inferiori a -2.0 MPa, la popolazione endofitica va gradatamente aumentando (vedi grafico) fino a quando, a valori inferiori a -3.0 MPa, il fungo passa dalla fase endofitica a quella patogenetica aggredendo rapidamente i tessuti dell’ospite e causando il cosiddetto “cancro carbonioso delle querce”. L’aumento delle temperature estive e la maggior frequenza di fenomeni estremi, tra cui la siccità, potrebbero “attivare” un alto numero di organismi comunemente “silenti” innescando pericolosi eventi di deperimento di cenosi forestali 30 25 20 15 10 5 -4,0 -3,5 -3,0 -2,5 MWP (MPa) -2,0 -1,5 -1,0 Forest patterns Spatial modelling of forest patterns in dependence by location characteristics is a reliable way to analyze the possible trajectories and shifts of species habitat in the near future if environmental conditions will change. Actual species distribution Statistical analysis Driving factors influencing distribution Probability of occurrence Neighborhood criteria Future spatial distribution Scenarios of future driving factors Actual species distribution Calibration Statistical analysis Driving factors influencing distribution Probability of occurrence Future Spatial Distribution Physiognomic categories Scenarios future driving factors Forest Map of Italy (1:100000) raster 250 meters of resolution Error in rasterization -0.15% % 00 - Woody plantation in agricultural areas 0.55 01 - Oaks and other evergreen broadleaf forests 9.07 02 - Deciduous oak-dominant forests 24.45 03 - Chestnut-dominant forests 8.85 04 - Beech-dominant forests 11.52 05 - Hygrophyte species-dominant forests 0.85 06 - Other broadleaf deciduous autochthon species-dominant forests 10.28 07 - Exotic broadleaf-dominant forests and plantations 1.85 08 - Mediterranean pine and cypress dominant forests 2.46 09 - Oro-Mediterranean and mountain pine dominant forests 2.75 10 - Abies alba and Picea rubens dominant forests 7.71 11 - Larch and cembrus pine dominant forests 3.06 12 - Exotic needleleaf dominant forests 0.10 13 - Mixed needleleaf and broadleaf forests with prevalent beech 2.19 14 - Mixed needleleaf and broadleaf forests with prevalent oro-mediterranean and mountain pine 2.24 15 - Mixed needleleaf and broadleaf forests with prevalent Abies alba and/or Picea rubens 1.93 16 - Mixed needleleaf and broadleaf forests with other species prevalent 6.77 17 - Tall Mediterranean Macchia 3.35 26% of Italian territory is forest Actual species distribution Calibration Statistical analysis Driving factors influencing distribution Probability of occurrence Future Spatial Distribution Scenarios future driving factors Driving factors •Elevation values (m above sea level) •Slope value (°) •Aspect value (° clockwise from north) •Mean annual precipitation (mm) •Mean annual snow water equivalent (mm) •Mean daily short wave net radiation (W/m2) •Mean of the annual dew point temperature (°K) •Mean of the minimum annual temperature (°K) •Mean of the maximum annual temperature (°K) DEM srtm DMI F12 A2 Actual species distribution Calibration Statistical analysis Driving factors influencing distribution Logistic regression Probability of occurrence Future Spatial Distribution Scenarios future driving factors Pi log 1 Pi 0 1 x1 2 x2 3 x3 ... n xn where Pi is the probability for the occurrence of the considered forest type on location i and the x's are the location factors (independent variable values) forcing the presence/absence of forest classes. ROC Curve Accuracy 1.0 Sensitivity 0.8 0.6 0.4 ROC 0.973 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1 - Specificity i.e.ROC curve test for class 8 Diagonal segments are produced by ties. Mean ROC 0.855 Actual species distribution Calibration Statistical analysis Driving factors influencing distribution Probability of occurrence Neighbooring criteraia Future Spatial Distribution Scenarios future driving factors Example of Euclidean distance grid Example of distance-based probability grid Piv Pi wis Pi s wi v Piv Forest classes 00 - Woody plantation in agricultural areas 01 - Oaks and other evergreen broadleaf forests 09 - Oro-Mediterranean and mountain pine dominant forests Altitude profiles of forest distribution 10 - Abies alba and Picea dominant forests class 0 3000 class 1 class 2 2500 11 - Larch and cembrus pine dominant forests class 3 class 4 class 5 2000 1500 m asl class 6 12 - Exotic needleleaf dominant forests class 7 class 8 class 9 13 - Mixed needleleaf and broadleaf forests with prevalent beech class 10 1000 class 11 class 12 500 14 - Mixed needleleaf and broadleaf forests with prevalent oro-mediterranean and mountain pine class 13 class 14 class 15 0 0 500 1000 1500 2000 2500 class 16 3000 Number of pixels Actual distribution 3000 2500 class 2 class 3 class 4 1500 m asl 2000 class 5 class 6 class 7 class 8 1000 class 9 class 14 500 Case a) Changed areas (red, 82%) considering only statistical analysis 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 class 15 class 16 0 5500 Number of pixels Case a) 3000 class 0 2500 class 2 class 3 class 4 2000 m asl class 5 1500 class 6 class 7 class 8 1000 class 9 class 10 500 class 14 class 15 class 16 0 500 1000 1500 2000 2500 3000 Number of pixels Case b) Changed areas (red, 77%) considering statistical analysis and neighborhood criteria 3500 4000 4500 5000 0 5500 CONCLUSIONS • Climate change will impact mountain ecosystems in different and possible unexpected ways (increase productivity, decrease biodiversity…) • The human dimension is still important • Conservation of old forests preserve ecosystem services “You can observe a lot, just by watching.” -Yogi Berra Thank You