Esercizi Spettri atomo H E ( 1 n 2 arrivo 1 n 2 ) partenza Le “serie” prendono il nome dal valore di n di “arrivo”. Lyman na=1 Balmer na=2 Paschen na=3 Quindi la riga a frequenza più bassa ( e lunghezza d’onda più grande) di ogni serie è quella tra i livelli che corrispondono a na e na+1. ESERCIZIO 1 1.La riga di Lyman a numero d’onda più basso per l’atomo di H è a 82259 cm-1. Calcolare la frequenza in Hz e la lunghezza d’onda della transizione per l’atomo di Li2+ . Z 2 me4 1 En 2 2 2 2 32 0 n E ( H ) 1 E ( Li 2 ) 9 Per H Z=1 Per Li2+ Z=3 E (H ) 1 2 ( Li ) 9 ( Li 2 ) 9 82259cm1 9 8.2259 106 m1 ( Li 2 ) (9 8.2259 2.99) (106 108 ) Hz 20.2319 1014 Hz c Esercizio 2 Gli astronomi hanno trovato atomi di H nello spazio interstellare con numero quantico n altissimo. Calcolare la lunghezza d’onda della luce emessa da un elettrone che subisca una transizione da n=236 a n=235, e individuare la zona spettrale corrispondente. 109677.578cm 1 Costante di Rydberg En 2 cm 1 n E235 E236 1 1 1 7 1 cm 1 . 5313 10 cm 2 2 235 236 1.6795 10 2 cm 1 1.6795m 1 1 m 0.595m 1.6795 1 m 0.595m 1.6795 La zona è quella della radiofrequenza. Esercizio 3 Calcolare la probabilità di trovare la particella nei diversi punti di un’orbita circolare se la sua funzione d’onda è 1 im m ( ) e 2 con m = 2. ------------------------------------------------------------------ La probabilità di trovare la particella tra e + d è: 2 ( ) 2* ( )d (interpretazione di Bohr) 1 i 2 1 i 2 1 (i 2 i 2 ) 1 2 ( ) ) e e e 2 2 2 2 * 2( Quindi la localizzazione della particella sull’orbita è del tutto indefinita perché non dipende da . Il risultato inoltre non dipende dalla particolare funzione, il risultato è lo stesso qualsiasi sia il valore di m. Esercizio 4 Calcolare la differenza di energia tra i primi due livelli energetici per una molecola di O2 in una scatola monodimensionale lunga 5 cm. Come potreste dimostrare che la quantizzazione dell’energia si può trascurare per una scatola di queste dimensioni? (Suggerimento: cfr. con l’energia media ) -----------------------------------------------------------------n 2h 2 Espressione dell’energia per la particella nella scatola: En 8mL2 Dati che ci servono: h 6.62 10 34 J s Massa della molecola di O2: 32 u.a. x peso in kg di 1 u.a. (mu) mu 1.66 10 27 kg MO2 1.66 1027 32kg 53.11027 kg Lunghezza della scatola: L = 5x10-2 m I primi due livelli energetici corrispondono ai numeri quantici n = 1 e n = 2. h2 4h 2 3h 2 E1 E2 E E2 E1 2 2 8mL 8mL 8mL2 3h 2 3 (6.62 ) 2 10 68 E E2 E1 26 J 2 4 8 5.31 25 10 10 8mL M O2 5.31 1026 kg E 0.124 10 68 1030 J 1.24 10 39 J La scatola di 5 cm è una scatola di dimensioni ordinarie. Un confronto ragionevole può essere tra la differenza di energia calcolata tra due stati quantizzati per la molecola di O2 , e l’energia media ottenuta dalla termodinamica statistica per il moto di una molecola di gas perfetto in una direzione: 1 E kT dove k è la costante di Boltzmann. A 300K : 2 1.38 10 23 300 E J 2.1 10 21 J 2 La differenza di energia tra due stati quantizzati è piccolissima rispetto all’energia media. Esercizio 5 Il numero d’onda che corrisponde alla transizione vibrazionale per la molecola di 12C=16O è 2170 cm-1. Usando il modello dell’oscillatore armonico, ricavare la costante di forza del legame C=O. ------------------------------------------------------------------ Nel modello dell’oscillatore armonico abbiamo: E ( 1 2)h Le transizioni permesse sono quelle con 1 La transizione “fondamentale” è quella tra lo stato con v=0 (che è il più popolato) e v=1 E (3 2h ) (1 2 h ) h Ma per la relazione di Planck: E h Quindi la frequenza del moto di vibrazione delle molecole biatomiche è anche la frequenza della radiazione elettromagnetica che possono assorbire. Procedimento: 1. Si ottiene la frequenza dal numero d’onda. 2. La frequenza si pone eguale a quella di vibrazione. 3. Dall’espressione della frequenza per l’oscillatore armonico si ottiene la costante di forza. 1 Numero d’onda c c Per passare alla frequenza bisogna moltiplicare per c, velocità della luce. c 3 108 ms 1 Esprimiamo il numero d’onda in unità SI. Si ricordi che 1cm 1 100 m 1 2170 cm 1 2.170 105 m 1 3 108 2.170 105 m 1 m s 1 6.51 1013 s 1 6.51 1013 Hz 65.1 THz E adesso? ? Adesso è quasi fatta! 1 k 2 4 2 mC = 12 u.a. 1 2 k k 4 2 2 mO = 15.9949 u.a. (Approssimiamo mO a 16 u.a.) Per calcolare la massa in kg dobbiamo moltiplicare la massa in u.a. per il peso in kg dell’u.a.: mu 1.66 10 27 kg mC mO 12 16 1.66 10 27 kg 11.38 1027 kg mC mO 12 16 k 4 2 2 (4 9.87 42.38 11.38)(1026 1027 )(kg s 2 ) k 4 2 2 (1.905 104 )(101 )(kg s 2 ) 1 N = kg x m x s-2 k 1905 N m 1 Che risoluzione dovrebbe avere uno spettrometro IR per distinguere tra 12CO e 13CO ? Esercizio 6 La funzione d’onda angolare degli atomi idrogenoidi è anche autofunzione degli operatori di momento angolare. a. Quali sono gli autovalori di questi operatori per un elettrone in uno stato n,l,m? b. Siete capaci di dimostrare che le funzioni dette sono autofunzioni dell’operatore lz? Modulo del momento angolare: l l (l 1) Componente lungo z del momento angolare: lz m lz i 1 eim 1 im 1 im l z ml e im m( e ) 2 i 2 i 2 Esercizio 7 Che relazione c’è tra gli orbitali 2p0, 2p1, 2p-1, e gli orbitali 2px, 2py, 2pz? 2 p0 cos 2 p1 sin ei 2 p1 sin e i p1 p1 2 p p1 py i 1 2 pz p0 px 2 pz 2 p0 cos 2 p x 2 p1 2 p1 sin (ei e i ) sin cos 2 p y 2 p1 2 p1 sin (ei ei ) sin sin lz i Le funzioni reali degli orbitali non sono autofunzioni di lz 2 pz 2 p0 cos 2 px sin cos 2 p y sin sin Esercizio 8 Disegnare la forma del potenziale per l’oscillatore armonico, la forma delle funzioni d’onda da v=0 a v= 3, e scriverne le energie Esercizio 9 Sapete giustificare l’uso del modello dell’oscillatore armonico per descrivere i moti di vibrazione delle molecole? Quali sono i limiti del modello secondo voi? v=3 v=2 v=1 v=0 La forma del potenziale in Se si adotta il modello dell’oscillatore armonico si cui si muovono i nuclei assomiglia ad una parabola trova che i livelli energetici sono tutti equidistanti per gli stati a energia più bassa Se si usa un potenziale più simile a quello reale, si trova che i livelli di energia si infittiscono al crescere di v. Esercizio 10 Lo spettro vibrazionale della molecola di 1H19F ha una riga a 4138 cm-1 . Ricavare la costante di forza del legame H-F (assumete che le masse siano 1 u.a. per H e 19 u.a. per F). 966 Nm 1 0 cm 1 H2 2 H2 1 H 19F 1 H 35Cl 14 N2 16 O2 1 4400 3118 4138 2990 2358 1580 r pm 74 74 92 127 110 121 1 k Nm 575 577 966 516 2294 1177 kJmol 1 432 440 564 428 942 493 Moto di rotazione delle molecole Una molecola che ruota in assenza di potenziale può essere considerata come una particella di massa μ che si muove su una superficie sferica di raggio r uguale alla distanza di legame. Quindi possiamo usare i risultati trovati per la particella sulla sfera per avere informazioni sul moto di rotazione delle molecole biatomiche. m1 r m2 m1 m2 m1 m2 r Esercizio 11 Calcolare le energie dei primi cinque livelli rotazionali della molecola di H2, e per ognuno degli stati le grandezze del momento angolare, e i valori delle proiezioni del momento angolare lungo l’asse z. Momento di inerzia per la molecola di H2 : I= 4.603 x 10-48 kg m2 Suggerimento: ricalcolatevi per esercizio il momento di inerzia di H2! ------------------------------------------------------------------ Procedimento: le energie degli stati rotazionali di H2 si calcolano con il modello del “rotatore rigido”, che equivale al moto di una particella di massa ridotta su una sfera di raggio r. Quindi l’espressione per l’energia è: 2 El l (l 1) 2I I cinque stati a energia più bassa hanno numeri quantici l = 0,1,2,3,4 (per gli stati rotazionali si usa anche il simbolo J ). Conviene calcolare 2 2I Costante di cui abbiamo bisogno 1.055 10 34 J s 2 (1.055) 2 (1034 ) 2 J 2 s 2 Calcoliamo : 48 2 2I 2 4.603 10 kg m 2 1.113 1068 J2 J 20 21 48 0 . 1209 10 1 . 209 10 J 2 2 9.206 10 kg m s J l=0 E0 0 l=1 E1 2 1.209 1021 J l =2 E2 6 1.209 1021 J l=3 E3 12 1.209 10 21 J l=4 E4 20 1.209 1021 J Quadrato del modulo del momento angolare: l (l 1) 2 Calcolatelo per esercizio per i primi cinque valori di l. Valori delle proiezioni del momento angolare su un asse, in unità : l=0 ml 0 l=1 ml 1, 0,1 l =2 ml 2, 1, 0,1,2 l=3 ml 3, 2, 1, 0,1,2,3 l = 4 ml 4, 3, 2, 1, 0,1,2,3,4 Esercizio 12 La molecola di ossido di carbonio ha una distanza di legame di 113 pm. Ricavare la frequenza per la transizione tra i due stati rotazionali più bassi per la molecola 12C-16O. m1 r m2 2 E j J ( J 1) 2I E EJ ' EJ m1 m2 m1 m2 J 0,1,2,... I due stati rotazionali a energia più bassa sono quelli con J=0 e J=1 E E J ' E J E1 E0 E1 2 2 2 E1 2 2 2I I r