A.A. 2013 – 2014
ESPERIMENTAZIONI DI FISICA 3
Programma del corso
•
•
•
•
•
Dispositivi a semiconduttore.
Transistor.
Amplificatori.
Elettronica digitale.
Rumore elettrico.
Testi di riferimento:
-Millman Grabel Microelectronics Mc Graw-Hill (fuori stampa)
- Appunti in rete.
Esp- 3 - Semiconduttori AA13-14
1
Dispositivi a semiconduttori
Semiconduttori
Conduzione nei metalli
Conduzione nei semiconduttori
Drogaggio dei semiconduttori
Giunzione pn
Esp- 3 - Semiconduttori AA13-14
2
STRUTTURE DEI SOLIDI
• Classificazione generale dei solidi
AMORFO
CRISTALLINO
Esp- 3 - Semiconduttori AA13-14
POLICRISTALLINO
3
SOLIDI CRISTALLINI
• I solidi di cui ci occupiamo hanno una
struttura cristallina: gli atomi sono disposti in
modo regolare (reticolo)
• Gli atomi sono legati medianti
gli elettroni più esterni
(elettroni di valenza)
Esp- 3 - Semiconduttori AA13-14
4
STRUTTURA ATOMICA
• Elettroni di valenza
3s2
2s2
1s2
Z=14
A=28.1
• Gruppi di più elettroni
circondano il nucleo negli
«orbitali» (modello
atomico di Bohr).
• Gli elettroni più esterni
2p6 determinano le proprietà
chimiche e di conduzione
dell’atomo
3p2
Esp- 3 - Semiconduttori AA13-14
5
FORMAZIONE DELLE BANDE
Forma del potenziale (app.)
NUCLEO
LIVELLI ENERGETICI POSSIBILI
Esp- 3 - Semiconduttori AA13-14
6
FORMAZIONE DELLE BANDE
Energia
BANDA DI CONDUZIONE
3p2
GAP
3s2
BANDA DI VALENZA
Passo
reticolare
Esp- 3 - Semiconduttori AA13-14
7
CLASSIFICAZIONE DEI SOLIDI
Energia
Banda di conduzione
Banda proibita “GAP’’
Eg
Banda di valenza
Isolante
Metallo
Semiconduttori alla
temperatura ambiente
Esp- 3 - Semiconduttori AA13-14
8
IL MODELLO DI DRUDE della
CONDUZIONE ELETTRICA
Assunzioni:
Gli elettroni in un conduttore
1. Non interagiscono tra loro (gas perfetto)
2. L’interazione tra gli elettroni e gli atomi del reticolo
è istantanea
3. Dopo l’urto direzione è casuale e la velocità
(modulo) dipende dalla temperatura
Esp- 3 - Semiconduttori AA13-14
9
LA CORRENTE ELETTRICA NEL
MODELLO DI DRUDE
Moto degli elettroni di conduzione
E=0
uE
uE
u : velocità di deriva
Mobilità
ut
Nq n(u  t  S )q

t
t
 qnuS
I
S
E≠0
j
I
1
 qnu  qn E  E  E ( A / m 2 )
S

S
1
I  qn ESl / l  (qn ) V  V
l
R
Esp- 3 - Semiconduttori AA13-14
10
LA CONDUZIONE ELETTRICA nei
METALLI
• Nei metalli i portatori di carica “liberi” sono solo gli elettroni, per
cui la densità di corrente si scrive:
j  qnud  qnE  E ( A / m 2 )
ud  E m / s
n: densità di portatori (elettroni)
disponibili per la conduzione ~ 1021 cm-3
ud: velocità di deriva dei portatori (elettroni)
σ: conduttività del materiale ~ 105 (Ω cm)-1
µ: mobilità dell’elettrone ~ 500 cm2(Vs)-1
Esp- 3 - Semiconduttori AA13-14
11
LA CONDUZIONE ELETTRICA nei
METALLI e nei SEMICONDUTTORI
METALLO (Cu)
SEMICONDUTTORE
Atomi per cm3
8.5 1022
CONCENTRAZIONE PORTATORI
5 10 21
MOBILITA’
500 (cm2/V s)
1400 – 450 (cm2/V s)
CONDUCIBILITA’
105 (Ω cm)-1
2.5 10-6 (Ω cm)-1
(cm-3)
(cm-3)
Esp- 3 - Semiconduttori AA13-14
5 1022
(cm-3)
1.45 1010 (cm-3)
12
SEMICONDUTTORI
(intrinseci)
Esp- 3 - Semiconduttori AA13-14
13
SILICIO intrinseco
Struttura cristallina con cella elementare
cubica a facce centrate
Proprietà
Valore
Numero atomico
14
Elettroni di valenza
4
Atomi per cm3
5 1022
Eg @ 300K (eV)
1.12
Conc. intr.@ 300K (cm-3)
1.45 1010
Conduttività @ 300K (Ωcm)-1
5 10-6
Esp- 3 - Semiconduttori AA13-14
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
14
Conduzione mediante le «LACUNE»
Energia
La mancanza di un elettrone è simulata
da una carica positiva detta “lacuna” o “buca”
Campo elettrico
Livello energetico della
Banda di conduzione
L’elettrone si muove con la sua mobilità n
Eg
Atomo
Eg
Elettrone
Altri elettroni possono occupare la buca libera
+
+
+
+
+
+
+
La “lacuna” si muove con la sua mobilità, p, in senso opposto agli elettroni
Esp- 3 - Semiconduttori AA13-14
16
Portatori di carica nei semiconduttori
•Nei semiconduttori sia gli elettroni sia le lacune
contribuiscono, indipendentemente, alla conduzione.
•I meccanismi cui sono soggetti elettroni e lacune nel
reticolo sono differenti e di conseguenza le mobilità
dei due tipi di portatori sono differenti.
Esp- 3 - Semiconduttori AA13-14
17
La densità di corrente elettrica nei semiconduttori
Carica dell’elettrone
Campo elettrico
j  q (n n  p p ) E
Concentazione di elettroni
Concentazione di lacune
Mobilità delle lacune
Mobilità degli elettroni
Nei semiconduttori i portatori di carica sono
sia gli elettroni sia le lacune
Esp- 3 - Semiconduttori AA13-14
18
La corrente di diffusione
Nei semiconduttori ci può essere un accumulo di portatori (elettroni
o lacune): la densità dei portatori dipende dalla coordinata. Ad
esempio per le lacune p=p(x)
p(x)
x
Il numero dei portatori che attraversano una
sezione ideale del semiconduttore, nel
senso che va dalla concentrazione più alta a
quella più bassa è maggiore di quelli che
vanno in senso inverso. Questo fenomeno
definisce la corrente di diffusione, la cui
espressione è (per le lacune): (dettagli)
dp
j   qD p
dx
D: coefficiente di diffusione .
Si misura in (m2/s)
Esp- 3 - Semiconduttori AA13-14
19
Corrente di diffusione
T ≠0
p(x)
u: velocità media dei portatori
t : tempo di collisione
l
l: cammino libero medio u 
t
 p ,left right
Materiale aggiuntivo
 p ,rightleft
-l
0
l
x
1
 u p (l )  p   p ,left right   p ,right left  1 u [ p(l )  p(l )] 
2
2
1
 u p (l )  lu p(l )  p(l )  lu dp( x)
2
2l
dx
dp ( x)
dp
  qD p
dx
dx
dn( x)
dn
jn ( x)   qlu
 qDn
dx
dx
j p ( x)   qlu
corrente di diffusione lacune
corrente di diffusione elettroni
Esp- 3 - Semiconduttori AA13-14
20
La corrente di diffusione (cont.)
Per gli elettroni l’espressione della corrente di diffusione
ha il segno opposto perché gli elettroni hanno carica
negativa:
dn
j  qDn
dx
In generale le correnti di lacune ed elettroni in un semiconduttore
saranno la somma della corrente di deriva e di quella di diffusione:
dp 

j p  q p p E  D p

dx 

dn 

jn  q n n E  Dn

dx 

Esp- 3 - Semiconduttori AA13-14
21
Semiconduttori intrinseci
• I semiconduttori puri (intrinseci) sono pessimi
conduttori a temperatura ambiente.
• Esempio. Resistenza a 300 K di:
• (Tabella resistività)
Si
100 µm
1 mm
2 mm
1
2
2
S
10

10
cm
3
R    2.3 105 cm 1

2
.
3

10

1
l
2 10 cm
• Resistenza per il rame
1
2
2
10

10
cm
9
R  1.69 106 cm 1

8
.
5

10

1
2 10 cm
Esp- 3 - Semiconduttori AA13-14
22
Semiconduttori estrinseci o drogati
• Inserendo delle impurità nel semiconduttore (atomi diversi da
quelli che lo formano) la sua conducibilità elettrica può cambiare
sensibilmente.
• Un semiconduttore nel quale sono inserite delle impurità viene
detto estrinseco o drogato.
• La frazione di atomi sostituiti tipicamente è compresa
nell’intervallo10-3 – 10-9
• Il drogaggio può essere fatto in due modi:
– Con atomi pentavalenti (donori)
– Con atomi trivalenti ( accettori)
Esp- 3 - Semiconduttori AA13-14
23
Semiconduttori drogati di Tipo n
• Drogati con atomi pentavalenti (Antimonio, Fosforo e
Arsenico) diventano semiconduttori di tipo n
Silicio
elettrone libero
Impurezza
pentavalente
+4
+4
+4
+4
+4
+4
+4
+4
+4
+5
+4
+4
Esp- 3 - Semiconduttori AA13-14
24
Semiconduttori drogati di Tipo p
• Drogati con atomi trivalenti (Boro, Gallio e Indio) diventano
semiconduttori di tipo p
Silicio
+4
+4
+4
+4
lacuna
+4
+4
+4
+4
Impurezza
trivalente
+4
+3
+4
+4
Esp- 3 - Semiconduttori AA13-14
25
Semiconduttori drogati
• Le impurezze aggiunte al semiconduttore sono tutte
ionizzate (E=0.05eV) quindi contribuiscono alla
conduzione
• La concentrazione delle impurezze è dell’ordine di 1
atomo (donore o accettore) per 108 atomi di
semiconduttore.
• Quindi la concentrazione di portatori dovuti alle
impurezze è: 5x1014 cm-3
• questo numero va confrontato con la concentrazione
intrinseca 1.5x1010 cm-3: 104 volte più piccola! (La
conduttività è 0.1 (Ω cm)-1)
Esp- 3 - Semiconduttori AA13-14
26
Legge di azione di massa
In un semiconduttore, intrinseco o drogato, avvengono i seguenti fenomeni:
1.
sono create in continuazione coppie elettrone – lacuna con una velocità C
che dipende dalla temperatura:=C(T)
2.
ogni volta che un elettrone e una lacuna si incontrano avviene un
fenomeno di annichilazione o ricombinazione ed entrambi i portatori
scompaiono (in realtà l’elettrone non scompare ma assume una posizione
fissa nel cristallo e non è più disponibile per la conduzione). Indichiamo con
R il numero di queste ricombinazioni nell’unità di tempo; R dipenderà sia
dalla temperatura sia dal prodotto delle concentrazioni di elettroni (n) e
lacune (p) : R= n p f(T)
3.
All’equilibrio la creazione di coppie e la loro ricombinazione dovranno
essere uguali: R= C, per cui il prodotto np dipende solo dalla temperatura
e non dal drogaggio. Potremo quindi uguagliare np a ni2 dove ni è la
concentrazione del semiconduttore intrinseco.
4.
La legge di azione di massa di esprime quindi come:
np  ni2
Esp- 3 - Semiconduttori AA13-14
27
La giunzione pn
tipo p
-
-
-
tipo n
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diffusione delle buche
nella zona tipo-n e
ricombinazione
diffusione degli
elettroni nella zona
tipo-p e ricombinazione
lacune
Impurezze
trivalenti
elettroni
Zona di svuotamento
(depletion region)
Esp- 3 - Semiconduttori AA13-14
Impurezze
pentavalenti
28
tipo p
La giunzione pn
Si ottiene giustapponendo due
semiconduttori uno di tipo p e
l’altro di tipo n
tipo n
d 2V



dx 2

x
E ( x) 

wp
 ( x' )
dx'

Barriera di potenziale
Esp- 3 - Semiconduttori AA13-14
29
La giunzione pn
concentrazione lacune ed elettroni
-
tipo p
log( n, p)
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
NA
ND
n
ni2 /NA
tipo n
p
ni2 /ND
Portatori
Maggioritari
minoritari
x
applet giunzione pn
• http://oes.mans.edu.eg/courses/SemiCond
/applets/education/pn/pnformation/pnfor
mation.html
Esp- 3 - Semiconduttori AA13-14
31
Scarica

ESPERIMENTAZIONI DI FISICA 3