RPC muon trigger • • • • • • • • • 3 concentric cylindrical layers of RPC at 5, 7.5 and 10m radius 2 gas gaps and 2+2 readout planes for each detector element 2 mm gas gap with bakelite electrodes Gas mixture: tetrafluorethane (C2H2F4) 94.7% isobutane (C4H10) 5% sulfur exafluoride (SF6) 0.3% RPCs working in saturated avalanche mode Efficiency: ~98% Time resolution: ~ 1 ns Spatial resolution: 5-10 mm Rate capability: ~ 1000 Hz/cm2 • • Surface 3650 m2 Readout channels: 360k Detector MDT CSC RPC TGC Region B/E Nominal Pseudorapidity range HV η<2.7 (340k ch.) EI 2.0<η<2.7 (31k ch.) B η<1.05 (360k ch.) E 1.05<η<2.4 (320k ch.) 3,080V Gas mixture and gain Ar : CO2 (93/7) : 3bar 2E4 1,800V Ar : CO2 (80/20) 6E4 9,600V C2H2F4 iso-C4H10 SF6 ( 94.7 : 5.0 : 0.3 ) 1E7 2,800V CO2 : n-Pentane ( 55 : 45 ) 17deg. 3E5 Spatial resolution better than 100μm ~cm but fast for LVL1 2 Detector description ϕ strip panel 2mm gas gap η strip panel η strip panel 2mm gas gap ϕ strip panel Each chamber contains a double-layer of RPCs, layer 0 (closest to IP) and layer 1 Each layer made of 2mm thick gas volumes is equipped with 2 panels of readout strips 25-35mm wide in orthogonal coordinates (η,ϕ) Strip signals are read out by the front-end electronics connected at the strip edge and encapsulated in the chamber box RPC signals are used to provide triggers and the azimuthal coordinate of the muon tracks LVL1 trigger Two trigger logics are implemented: Low-pT trigger RPC2 && RPC1 Hits in 3 of the 4 inner layers Hit in station RPC2 (BM pivot) extrapolated to station RPC1 (BM confirm) along a straight line through interaction point Look for hit in station RPC1 within a coincidence window High-pT trigger Low-pT && RPC2 && RPC3 Logical AND of Low PT and at least 1 of the 2 planes in station RPC3 (BO confirm) within a coincidence window Coincidences are performed in coincidence matrices (CM) hosted inside PAD boxes placed on detector W candidate with muon trigger Ruolo di Bologna • Entrati nel 2005 (senza sapere bene cosa ci aspettasse ...) • Spinta a contribuire su questo sistema con vari problemi – altri gruppi: RM2 (progetto), NA, LE • Sistema fondamentale di ATLAS • Contributo alla riorganizzazione delle fasi di pretest, lavori di riparazioni off e on-detector, cablaggi, commissioning del sistema • II fase: – – – – Espansione verso il DCS (fatto ex-novo o quasi) Monitor Online della qualita` dei dati System experts Simulazione del LVL1 – Debug & commissioning del LVL1 (strade di trigger ecc.) Attivita` in corso • Rifacimento sistema distribuzione HV • Semplificazione e sostituzione connettori • Lavori di assemblaggio e costruzione fatti presso una ditta esterna • In sezione test HV (moduli NIM di Alice) Persone • Lorenzo Bellagamba – simulazione LVL1, database, analisi • Marcello Bindi – DCS / database (expert on call) • Davide Boscherini – Responsabile attivita` RPC • Alessia Bruni – Monitor Online • Graziano Bruni – simulazione LVL1 (debug & trigger roads), analisi • Massimo Corradi – simulazione LVL1 (trigger roads & overlaps) – coordinatore sottogruppo “Low PT muons for resonances” • supporto J/Y, b – effic. J/Y T&P – spettro 2 m dalla r alla Z – metodi per separare prompt da fake – Rate muoni fake (K0 p, D0 Kp) • Alessandro Polini – DCS / DAQ, (expert on call) – IBL AIDA • • • • • • • • GIF++ infrastructure 4 anni dal gennaio 2011 BA, BO, LNF, RM2, Weizman, INRE, NTUA 1a milestone: dopo 18 mesi [activity report riguardo il design della infrastruttura] BO: sviluppo DCS (Polini, Bindi) + contributi al cosmic ray test stand (Boscherini) Impegno “minimo” di persone comunque al CERN Vantaggi: utenti “privilegiati” della facility Project leader: Davide Boscherini