Determination of the pp ZX μ+μ−X inclusive cross section with a simultaneous fit of Z yield, muon reconstruction, Isolation cut and High Level Trigger efficiencies. Pasquale Noli XXII Cycle Tutors: Chiar.mo Prof. C.Sciacca Dr L. Lista – Dr F. Fabozzi Outline • LHC and CMS description • Event selection – Fiducial and kinematical cuts – Di-muons categories • Fit strategy • Analysis results • Fit stability – Comparison of results at different Luminosity scenarios – Toy Monte Carlo study • Systematics of cross-section measurement • Conclusions PhD Noli Pasquale 2/26 The Large Hadron Collider • Energy: √s = 14 TeV – 7 times larger than TEVATRON – Search for new massive particles up to 5 TeV/c2 • • L = 1034 cm-2 s-1 Biggest cryogenic system in the word: – 1232 superconducting dipoles working at 1.9 K to provide a magnetic field B= 8.3 Tesla • • Cost: ≈ 4 biliion€ (accelerator + experiments) Human resources: > 5000 peoples invloved PhD Noli Pasquale 3/26 Event rates production @ √s =14 TeV and L= 1034 cm-2 s-1 Process PhD Noli Pasquale Event/s w.r.t. Wlν 600 103 Tevatron 105 LEP Zll 60 102 LEP bb 107 103 Babar 103 Belle tt 8 104 Tevatron Higgs (m=120GeV) 0.4 - Higgs (m= 800GeV) 0.005 - 4/26 LHC Physics Goals • Precise Standard Model measurements: – QCD jet cross section and αs – Top quark (factory !): mass, couplings and decay properties – Search of Standard Model Higgs boson in the range 115 GeV/c2 < mH < 1 TeV/c2 • Search for physics beyond the Standard Model: – SUSY – Extradimentions – Technicolor • B-physics – Mainly at LHCb: CP-violation in the B-channel • Heavy ions – Mainly at ALICE: phase transition from hadronic to quark-gluon plasma PhD Noli Pasquale 5/26 The Compact Muon Solenoid The Compact Muon Solenoid is a high granularity detector built around and inside a superconducting solenoid that provides a strong magnetic field of 4 T. • Inner Tracker – Silicon Pixel and Microstrips • Electromagnetic Calorimeter ECAL – Scintillating lead tungstate crystals • Hadronic Calorimeter HCAL – Scintillator brass sandwich • Muon system – Drift tube (BARREL) – Cathode Strip Chambers (ENDCAP) – Resistive Plate Chambers (BARRL-ENDCAP) • Trigger system: – L1 (custom electronic) 40MHz 100 kHz – HLT (processors farm) 100kHz 100 Hz PhD Noli Pasquale 6/26 The Inner Tracker Pixel Tracker: • Made by 100 150 μm cells • Resolution of 10 μm in the r-𝜙 plane and 20 μm in the r-z plane Microstrip Tracker: • Divided in 4 different parts TIB,TOB, TID, and TEC • Resolution: 25 μm in the r-𝜙 plane and 230 μm in the r-z plane TIB • Resolution: 32-52 μm in the r-𝜙 plane and 530 μm in the r-z plane TID, TOB, and TEC PhD Noli Pasquale 7/26 Calorimetric system ECAL : HCAL : HB HE HO PhD Noli Pasquale The Muon system • • • • Muon Trigger Muon identification BX identification Pt measuraments – Standalone resolution: 9% (up to 200 GeV/c) , 15-40 % (1 TeV/c) depending on η – with Tracker resolution improve: 5% at 1 TeV/c • Correct charge assignment 99% DT RPC CSC PhD Noli Pasquale Z candidates: Reco vs Monte Carlo Generator cut Y • Good agreement w.r.t MC sample • Low longitudinal momentum • Low transverse momentum • Flat distribution in 𝜙 1 E pz log 2 E pz PhD Noli Pasquale 10/26 Z candidates: no MC matched Combinatorial background is peaked at low values of invariant mass It decreases rapidly (log scale) for invariant mass increasing M μμ∈[60, 120] GeV/c2 S/B ≈ 0.1 % 86 % only 1 Z 0.4 % no Z 13.6% >1 Z PhD Noli Pasquale 11/26 Z events selection Two muon candidates (or 1 muon + 1 track) with: – – – – || < 2, pt > 20 GeV/c 60 < m < 120 GeV/c2 Track Isolation : pt < 3 GeV/c HLT single not-isolated muon :HLT_Mu15 5 statisticaly indipendent event categories allow to fit 5 parameters. 1) Z->µ µ : two global muons, 2 HLT matches 2) Z->µ µ : two global muons, 1 HLT match Both muons 3) Z->µ s : global + stand-alone, global µ HLT matched isolated 4) Z->µ t : global + track, global µ HLT matched, at least one muon 5) Z->µ µ : two global muons, at least 1 HLT match not isolated Z->µ s contributes to track efficiency estimate Z->µ t contributes to muon system efficiency estimate Z-> µ µ not iso contributes to isolation cut efficiency estimate PhD Noli Pasquale 12/26 Di-muon categories μμ, 2HLT μs μμ, 1HLT μt μμ, no-iso Five independent categories (golden, standalone, tracks, ...) PhD Noli Pasquale CMS AN -2009/005 ∫Ldt = 45 pb-113 Efficiencies from data μμ, 2HLT μs μμ, 1HLT μt μμ, no-iso Data driven simultaneous estimate of • Z yield • eff. of tracking reconstruction • eff. of muon reconstruction • eff. trigger • eff. Isolation cut PhD Noli Pasquale 14/26 Fit model Differential event yields Background shapes fitted as exponential polynomial Data driven signal shapes Signal yield expressions • fpeak(m) : Z➝μ+μ- = Z➝μ+μ-2HLT + Z➝μ+μ-1HLT mass spectra • f speak(m): taken from Z➝μ+μ- removing the track component to one of the two muons to mimic a standalone muon PhD Noli Pasquale 15/26 Signal shapes fpeak(m) In good agreement f speak(m) PhD Noli Pasquale 16/26 Chi-squared definition • Five observables • Five unknown signal parameters – plus background shapes and yields Other estimators, for example Poissonian Likelihood Ratio, lead to very similar results PhD Noli Pasquale 17/26 Fit Results @ 10 TeV, 45 pb-1 μt μs μμ, no-iso PhD Noli Pasquale CMS AN -2009/005 18/26 Fit stability: 133 to 5 pb-1 εtrk Z yield (normalized) εiso CMS PAS -2009/001 εHLT PhD Noli Pasquale Fit stable down to ~ 5 pb-1 εs.a. 19/26 Toy Monte Carlo study • 1000 Toy experiments generated for 45 pb-1 • True parameter taken from our full Monte Carlo fit Z yield Mean 0.36±0.04 σ = 1.14±0.03 εtrk Mean 0.04±0.04 σ = 1.03±0.03 εiso PhD Noli Pasquale εs.a. Small bias for Zs (low stat.) Mean 0.12±0.03 σ =0.99 ±0.02 Mean: 0.0680.034 σ: 1.021 0.028 CMS AN -2009/005 εHLT Mean 0.08±0.03 σ = 1.01±0.03 20/26 Toy Monte Carlo @ 133 pb-1 Mean 0.26 ± 0.24 σ = 1.03 ± 0.02 εtrk Z yield No bias when Zs has larger stat. εs.a. Mean 0.085 ±0.024 σ = 1.04 ± 0.02 εiso PhD Noli Pasquale Mean 0.0955± 0.023 σ = 0.99± 0.02 Mean 0.007±0.024 σ = 1.03±0.02 Bias decreasing w.r.t @ 45pb-1 Mean: 0.010.02 σ: 0.98 0.02 εHLT CMS AN -2009/005 21/26 Systematics Main systematic uncertainties addressed 1. Background estimation 2. Efficiency correlation 3. Acceptance: • Choise of generator type • PDF uncertainties • Muon scale and resolution 4. Luminosity PhD Noli Pasquale Systematic source Error Background 0.3% Efficiency correlation < 0.1% Order of generator ∼3% PDF uncertainties ∼4% pt muon scale ∼0.5% LHC Luminosity ~10% 22/26 Conclusions… • Analysis strategy is able to determine from data: – – – – – • • • • Z yield eff. of tracking reconstruction eff. of muon system reconstruction eff. Trigger eff. Isolation cut Allows to measure cross section with the very early data (few pb-1) Needs a smaller amount of statistics w.r.t. the Tag & Probe Complementary to Tag &Probe with high statistics Accurate and fast method – Run a single analysis step + a single fast fit – Suitable for prompt applications: • DQM • ‘Z counting’ for luminosity monitoring • Analysis is approved by CMS and an “early paper ” is done • Waiting for the real data PhD Noli Pasquale 23/26 LHC started on the 23th October 2009 Global machine checkout 2009 450 GeV Collisions CMS Control room Trial rump up Xmas Rump up commissioning to 1.2 TeV Rump up commissioning to 3.5 TeV 2010 Collisions at √s = 7 TeV Pilot physics PhD Noli Pasquale First data are taken and analyzed 24/26 CMS first data CMS Event display: J/Ψ candidate in pp collision at √s =2.36 TeV Two muons in forward part of CMS The analysis chain is able to reconstruct the particle in the event !!! PhD Noli Pasquale J/Ψ candidate with invariant mass 3.032 GeV/c2 Grazie dell’attenzione PhD Noli Pasquale 26/26 Backup PhD Noli Pasquale 27 Transverse slice through CMS PhD Noli Pasquale 28 Signal-Background Number of candidates in each category after the selection with an invariant mass in the range [60-120] GeV=c2. Here Z = Z1HLT + Z2HLT . The separate contributions from signal and background processes are shown. An integrated luminosity of 45 pb-1 is assumed. PhD Noli Pasquale 29 Isolation variable ∆Rveto = 0.015 Fit Results @ 10 TeV, 10 pb-1 Fit MC -truth εHLT 0.913 ±0.004 0.917±0.002 εIso 0.982±0.003 0.9785±0.0009 εsa 0.988±0.002 0.9907±0.0006 εTk 0.9988±0.0008 0.9986±0.0002 Parameter Nzµµ c2 PhD Noli Pasquale 3818±65 1.203 31 Misure di Efficienza dai dati Tag & probe Campione di eventi Z e e (μ μ ) TAG TAG : elettrone(muone) selezionato con criteri molto stringenti PROBE PROBE : elettrone(muone) selezionato con dei criteri più larghi dipendenti dalle selezioni richieste nelle varie analisi Massa invariante Tag-Probe in una finestra di massa intorno alla massa della Z Mappa delle efficienze in funzione di pt, η, Φ ε= # probe passanti la selzione # tutti i probe corrisp. a un tag Problemi • • Alta statistica necessaria per evitare un binning rozzo Contaminazione residua dei fondi 32 T&P – Fit Comparison We reweigh Zmumu invariant mass distributions using : • Fit recontruction efficiency values(black) • T&P recontruction efficiency values(red) The two distributions are in good agreement to each other Yield with T&P Nzµµ =8962 ± 97 Consistent with fit result Nzµµ =8827 ± 98 33 Accettanza geometrica PhD Noli Pasquale 34 Sistematiche Accettanza geometrica PDF and Generator Pt Scale PhD Noli Pasquale 35 Correlations (I) (1) N0 = total number of produced events p1 p2 muons 3-momenta f0 probability density function (2) (3) (4) 36 Correlations (II) (5) (6) (7) 37 Standalone-HLT Efficiency Correlation Track-Isolation Efficiency Correlation PhD Noli Pasquale 38