Riunione TOPEM Bologna 10-03-2010 - ore 11:00 - 11:45 F. Garibaldi - Introduzione e stato dell'arte dell'esperimento - ore 11:45 - 12:30 A. Gabrielli - Presentazione della catena HPTDC-NINO su crate VME in laboratorio. - ore 12:30 - 13:30 P. Musico - AOB Genova - ore 13:30 - 14:30 Pausa Pranzo- ore 14:30 - 15:15 F. Loddo - AOB Bari Topem: Stato dell’arte F,Garibaldi – Bologna 10-03-2010 L’esperimento: perche’ e come Challenges/problems A che punto siamo (qualche risultato preliminare(Roma,Bari/Ct,Lns) Next steps Interazione con referees Richiesta fondi integrativi? Prostate cancer is the most common cancer and the second leading cause of cancer death PSA SENSITIVITY 83% SPECIFICITY 17% CT Selective indication : PSA > 10 ng/ml cT3 Gleason score > 7 PSADRETRUS biopsy diagnosis is made from tissue obtained on a blind biopsy Need to consider fundamental changes in the approach to diagnosing prostate cancer In the future, multimodality imaging approach tailored to each patient PET/MR Design Challenges • Limited space for the PET detector • PET detector must not use magnetic materials • Could distort MR image MR gradient field-eddy currents Could produce noise in detector Could heat detector MR RF transmit Could produce MR image artifacts MR-compatible PET shielding materials Could distort MR image PET detector must not emit in MR frequency • MRI & MRS Could produce false PET events MR materials Will produce more gamma attenuation -CITRATE that is present in the normal prostate -CREATINA that may increase in the phlogosis and all the proliferative processes -COLINE more specific for a neoplastic transformation Dedicated high resolution high sensitivity PET probe for prostate imaging Requirements for radionuclide imaging - radiotracer (high specificity) - high sensitivity - practical consideration, cost - Detector goals 3D photon position capability spatial resolution ~ 1mm high coincidence photon efficiency energy resolution ~ 12% or better TOF ~ 300 ps or better drawback of the standard PET - detectors far away from prostate poor spatial resolution (6 – 12 mm) poor photon detection efficiency (<1%) activity ouside the organ -> poor contrast resolution - relative high cost per study Dedicated PET detector ring (Moses) Better than standard scannner but still limited. - Endorectal probe: PET coupled to a dedicated detector or to a standard PET scanner huge background from the bladder !! Could we reduce or eliminate it? 6 Resolution (mm FWHM) 5 4 3 3 mm 2 mm 2 1 0 Probe resolution = 1mm FWHM 0 5 10 15 20 25 Distance from probe face (cm) 30 35 40 TOF provides a huge Performance Increase! nconv= D/d Signals from Different Voxels are Coupled Statistical Noise Does Not Obey Counting Statistics If there are N counts in the image,nTOF=Δx/d N SNR = N Timing resolution depends on path)) - scintillator (kind (n.of photons, decay time, geometry (light photodetector (time jitter, capacitance, PDE etc) coupling (light collection efficiency) electronics (in our case has to be very compact ASIC) - front end - readout architecture Surti, Karp et al. LaBr3 A big advantage of SiPMs in a fast timing is a low time jitter, below 100 ps. However, a fast timing is limited by rather low photon detection efficiency (PDE), not exceeding 10 – 20%, depending on the number of pixels. This is of particular importance in timing with slow scintillators, like LSO, with the decay time constant of about 40 ns. Thus the expected time resolution is a direct function of sqr(n.p.e.) (PDE of SiPM). Thus, the application of SiPMs to TOF PET detectors requires a number of optimizations related to the size of the device, its PDE, number of pixels and finally its capacitance. Mozsynski Endorectal (SPECT and) PET [(2.5 x 5 (6) mm2] probe in multimodality with MRI Array SiPm DOI ≈1.5 mm S. Majewski [1(2) x 1 (2)] x [4 (5) x 4(5)] (5) cm3 S. Majewski 0T 7T LYSO (LSO) vs LaBr3(Ce) - Pixellated (not available for LaBr3(Ce)) vs continuous (dependence on layout) - Availabilty of LaBr3(Ce) - Balancing “isolation” of prostate from bladder vs SNR (NECR) Low Density Radial Elongation Penetration Blurs Image Resolution vs. Position 3 Attenuation Lengths Resolution (mm fwhm) 20 LaCl3 NaI 15 LaBr3 BaF2 RGB LuI 3 10 LuYAP LSO LuAP GSO BGO 5 0 0 5 10 15 20 25 Radial distance (cm) Some Degradation with LuI3, More with Ce/LaBr3 Fraction Low Coincidence Both Photons Deposit >350 keV Efficiency Compton 3 Atten. Lengths Scintillator Photoelectric LaCl3 NaI RGB LaBr3 BaF2 LuI3 GSO LuYAP LSO LuAP BGO 0 0.2 0.4 0.6 0.8 1 Relative Efficiency Some Degradation with LuI3, More with Ce/LaBr3 Coincidence Timing Resolution BaF2 210 ps Scintillator RGB 330 ps LaCl3 265 ps LaBr3 260 ps LuI3 200 ps LSO 300 ps LuAP 360 ps BGO 3000 ps 0 100 200 300 400 500 Coincidence Timing Resolution (ps) • New Scintillators Capable of Time-of-Flight • 500 ps Resolution 5x Reduction in Noise Variance suddivisione compiti - Bari - Ranieri: ASIC - De Leo (coll. con CT (e Lecce)) - Bologna - scheda ibrida per timing (coll. con Genova) - Genova - scheda ibrida timing (coll con Bologna) - LNS - caratterizzazione SiPM (PDE etc) - timing con SiPM - Roma - caratterizzazione SiPm (Meddi) - misure con minidetectors (Garibaldi) - simulazione (collaborazione con Cagliari (?) e Genova (?)) - PET/MRI: Maraviglia e coll. Roma (Meddi). Caratterizzazione SiPM IRST Roma. F. G. - simulazione: pending… (installato Geant4, (e Gate), codice Geant4 per prostata da Neal Clinthorne. Collaborazione possibile con Viviana Fanti (Cern/Cagliari), e Genova? - da fare: misure “di base” con mini-rivelatori - LYSO continuo e pixellato ( 1 x 1 mm2, 3 x 3 mm2) accoppiati a SiPM Hamamatsu 4 x 4 (3x3 mm2), Misure DOI con 10 mm e 5 mm di spessore (sandwitch). Readout disponibile, interfaccia per SiPM (Paolo). - scintillatori, prima meta’ Aprile, 1 array SiPm Hamamatsu gia’ disponibile - readout: interfaccia Paolo - primo minidetector in funzione test in MRI (con e senza screening (rame). (verifca effetto PET su MRI) Catania-Bari: misure di timing con pmt veloci TOPEM: attività prevista del gruppo INFN-LNS • • • • • • • • • • Strumenti disponibili: Laser pulsato 40ps 408nm Laser pulsato 40ps 650nm Sorgenti radioattive Camera oscura Sfera integratrice Cella peltier & dito freddo Amplificatore di tensione Gain=200, 4GHz Oscilloscopio digitale 4GHz Sistema di DAQ multiparametrico ADC, QDC, TDC, Scaler • • • • • • • • • • • Misure da effettuare su SiPM: Dark noise & cross-talk Gain Timing con laser Risoluzione energetica con laser? (se fattibile) PDE (2 punti, 408nm e 650nm) Timing con scintillatore (1 SiPM + laser) Timing in coincidenza con scint. (2 SiPM + 22Na) Timing vs temperatura Time walk Risoluzione energetica con scintillatore (22Na, 137Cs) altro..... LNS : Cosentino-Finocchiaro 1mm x 1mm testati 24 campioni 1mm x 1mm testati 24 campioni 1mm x 1mm testati 4 campioni 1mm x 1mm testati 4 campioni spettri in carica con luce laser, a tre diverse intensità Bilancio 2010 > Riunione Assegnazioni > Gruppo V > Esperimento TOPEM > Verbale riunione Verbale del Referee L_esperimento intende realizzare un nuovo sistema di imaging della prostata, basato su un rivelatore PET in combinazione con una MRI di tipo endorettale. La tecnica proposta intende risolvere gli attuali problemi diagnostici del cancro della prostata attraverso un rivelatore PET in grado di migliorare efficienza e risoluzione spaziale dell_imaging prostatico dopo la somministrazione di Colina radiomarcata C11. L_immagine funzionale combinata con MRI ad alta risoluzione dovrebbe migliorare in modo consistente il valore prognostico. Il finanziamento proposto avvia un primo studio di fattibilit_ articolato in quattro punti: a) realizzazione di un rivelatore PET composto da due testate delle dimensioni di circa 2 x 2 cm2 con cristalli pixellati di LYSO/LSO e lettura della luce di scintillazione mediante array di SiPM; b) verifica della sua compatibilita_ con MRI mediante test degli effetti del campo magnetico sull_imaging PET e degli effetti dell_apparato PET sull_ imaging MRI; c) studio della coincidenza temporale con SiPM per valutare i vantaggi della tecnica ToF sull_imaging prostatico; d) progettazione di un front-end integrato per la lettura e l_analisi timing dei SiPM. La Commissione ritiene che i risultati dello studio di fattibilita_ siano vincolanti ai fini del prosieguo dell_esperimento. Data la necessit_ di integrare fra di loro parti complesse (SiPM, FE chip, readout) la Commissione chiede alla collaborazione di indicare un Technical Coordinator che presenti un documento descrittivo del sistema per maggio 2010. referees: Aloisio, Pani, Del Guerra, Greco, Ambrosi Commento del Resp. Nazionale Electronics Individual Channel Electronics: Anger Logic: IDE AS VA-TA chip based, multiplexed readout 1024 Ch. ~ 2 kHz Resistive Chains phototube crystal Resistive chain and output signals Cristal and Phototubes, Planar view Higher Sensitivity Lower channel-to-channel crosstalk better signal quality Great flexibility in processing data Enhanced data Complexity Speed High Cost 4096 ch at 10 KHz Gamma Emission posizion (X,Y) obtained with: N ch a n n el X X X ZX Z X ;Y Y Y Y Z Y X c X i i 1 N ch a n n el c i 1 i N ch a n n el i ;Y c Y i i i 1 N ch a n n el c i 1 i ci i th channel signal (X i , Yi ) i th channel position Low Density Radial Elongation Penetration Blurs Image Resolution vs. Position 3 Attenuation Lengths Resolution (mm fwhm) 20 LaCl3 NaI 15 LaBr3 BaF2 RGB LuI 3 10 LuYAP LSO LuAP GSO BGO 5 0 0 5 10 15 20 25 Radial distance (cm) Some Degradation with LuI3, More with Ce/LaBr3 Fraction Low Coincidence Both Photons Deposit >350 keV Efficiency Compton 3 Atten. Lengths Scintillator Photoelectric LaCl3 NaI RGB LaBr3 BaF2 LuI3 GSO LuYAP LSO LuAP BGO 0 0.2 0.4 0.6 0.8 1 Relative Efficiency Some Degradation with LuI3, More with Ce/LaBr3 Coincidence Timing Resolution BaF2 210 ps Scintillator RGB 330 ps LaCl3 265 ps LaBr3 260 ps LuI3 200 ps LSO 300 ps LuAP 360 ps BGO 3000 ps 0 100 200 300 400 500 Coincidence Timing Resolution (ps) • New Scintillators Capable of Time-of-Flight • 500 ps Resolution 5x Reduction in Noise Variance For SPECT: Conclusi ons • CeBr3 and LaBr3 are compelling – Better light output & energy resolution than NaI:Tl – Shorter attenuation length than NaI:Tl – No other performance drawbacks! For PET: • LuI3 is very interesting, but has some tradeoffs – Energy resolution, light output, & timing excellent – Worse attenuation length & photoelectric fraction • LaBr3 and CeBr3 have more severe tradeoffs – Atten. length & photoelectric fraction much worse Economic Growth is Absolutely Necessary