Molecular activation on hotsurfaces by first principles G Tabacchi*, E Fois, D.Barreca, A . Gasparotto, E. Tondello Congresso Nazionale di Chimica Fisica 2010 STRESA 20-24/09/2010 gloria tabacchi insubria university - Como [email protected] http://scienze-como.uninsubria.it/gloria Molecules @ hot surfaces: ……may lead to organized nanostructures ac (not achievable at mild conditions) …through alternative and unexpected pathways For example, on MgO at T≈400 K..e Ru3 + Os3 clusters Ru–Os clusters A. Kulkarni, B. C. Gates, Angew. Chem. Int. Ed. 2009, 48, 9697. to get Ru-Os, desorption and migration of Os3/Ru3 clusters must take place. How? The Chemical Vapor Deposition (CVD) process M Co Few nm CVD O2 Molecular precursor Co(hfa) 2●TMEDA Cobalt oxides Metal oxides CuxO (x=1,2) nanosystems CuII precursor HEATED SUBSTRATE CuII Continuous films N O1 Quasi-1D nanosystems CVD O2 T=523-823K Gas sensing Cu (hfa)2 tmeda (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N’,N’-tetramethyl-ethylendiamine) Ts[Cu(hfa)2(TMEDA)] = 343 K A PCCP 2009, 11, 5998 H2 production 400°C 400°C From Cu2O granular films… 200 nm 100 nm 450°C 450°C dry O2 atmosphere 200 nm 100 nm 500°C 200 nm 500°C 100 nm 550°C 550°C 200 nm 1 μm …to CuO 1D nanoarchitectures (NWs) Cryst. Growth Des. 2009, 9, 2470 By CVD processes /advanced experimental techniques… we can: we can not: • grow nanostructures from molecular precursors • know how molecules are converted into materials: • control their phase composition and morphology • Precursor Activation on the heated substrate • Precursor decomposition • exploit their functional properties (liberation of the metal centre through ligand elimination) • MOx formation mechanism This work Modeling the first stages of the CVD process: activation of the Cu(hfa)2TMEDA precursor on a hot substrate (T = 750 K) Substrate surface @ CVD-conditions: hydroxylated SiO2 Model surface: 1 nm thick SiO2 slab with 2.8 Si-OH groups /nm2 Problem: the Cu center is protected by the ligands! Physisorption, rolling diffusion & molecular activation Three different regimes: a) Slow diffusion; b) physisorption; c) fast diffusion by rolling in-plane (x,y) trajectory Å b Å Mean square displacement 30 ps first principles molecular dynamics simulation of the Complex/Surface system at T=750 K Key role of the surface/molecule energy transfer in the complex activation Physisorption: Fast Rolling diffusion: Close contacts with the hot surface favor energy transfer to the molecule @ 750 K, kT/hc = 550 cm-1 Cu-Ligand bond stretching frequencies < 600 cm-1 Large deformations interligand interactions ..A vibrationally excited complex rolling on a hot surface may do this… Or this: …..Or ? … and then? conclusions Fast rolling diffusion regime: Stems from surface-molecule energy transfer Triggers molecular activation May be a general feature of high temperature surface chemistry A novel phenomenon, many open questions …. Acknowledgements • MIUR PRIN 2007 project “ Microscopic features of chemical reactivity” • CNR-INSTM PROMO • CARIPARO Foundation within the project “Multi-layer optical devices based on inorganic and hybrid materials by innovative synthetic strategies” Perspectives?? Work in progress Grazie per l’attenzione Cu2O O2 + H2O atmosphere CuO vibrational spectra of the isolated Cu(hfa)2 tmeda complex experimental calculated Main peaks assignment (cm-1): 2800-3300: (C-H); 1674: (C=O); 1400-1560: (C=C), (C-H) + (CH3)/(CH2) 1140-1260: combination of (C-H), (C-CF3), (C-F) 576: (Cu-Oeq.); 319 (Cu-Oap.); 490: (Cu-N) U-B3LYP/Cu: ECP10-MDF/aug-cc-pVDZ-PP; Ligands: D95+* level of computation G. Bandoli et al. PCCP, 2009, 11, 5998.