UNIVERSITA’ DEGLI STUDI DI PADOVA
Laurea specialistica in Scienza e Ingegneria dei Materiali
Curriculum Scienza dei Materiali
Chimica Fisica dei Materiali Avanzati
Part 12 – Plastic electronics
Corso CFMA. LS-SIMat
1
UNIVERSITA’ DEGLI STUDI DI PADOVA
Basic questions
 Is it possible to do electronics with molecules?
 What sort of molecules to use? Carbon-based, similar to
those used by biology, e.g. for photosynthesis
 How will we manipulate and position molecules to
create the architectures we want?
 Transport molecules in solution (as biology does)
 Assemble molecules in correct juxtaposition through use of
‘weak’ intermolecular interactions (e.g., hydrophobic vs.
hydrophilic)
Corso CFMA. LS-SIMat
2
UNIVERSITA’ DEGLI STUDI DI PADOVA
Plastic electronics
 Plastics (or, more correctly, polymers), are traditionally used within
the electronics industry as ‘passive’ materials, for encapsulation or for
their electrically- insulating properties. However, there is now a class
of polymers which can behave as semiconductors or as metals.
 Our understanding of the semiconductor physics of these materials
has enabled us to use them as the active components in a range of
devices.
 Polymer light-emitting diodes, LEDs, providing full color range and
high efficiency as well as solar cells show particular promise.
 The electronic behavior of these polymers is very different from
inorganic semiconductors such as silicon or gallium arsenide.
 Polymer electronic devices require different strategies to make them
useful. In some respects, these strategies resemble those already
adopted by biology, for example in photosynthesis.
Corso CFMA. LS-SIMat
3
UNIVERSITA’ DEGLI STUDI DI PADOVA
Large electronic conductivities in organic
materials
 Charge transfer crystals
 E.g. TTF-TCNQ, first metallic
conductivity (1973)
 Organic superconductors
 E.g., (TMTSF)2PF6 (1980)
 (BEDT-TTF)2X
Corso CFMA. LS-SIMat
4
UNIVERSITA’ DEGLI STUDI DI PADOVA
Conducting Polymers
1977: First conducting polymer, Poly(acetylene)
Shirakawa, MacDiarmid, Heeger
Corso CFMA. LS-SIMat
5
UNIVERSITA’ DEGLI STUDI DI PADOVA
Structures of some conjugated polymers
Corso CFMA. LS-SIMat
6
UNIVERSITA’ DEGLI STUDI DI PADOVA
Electronic structure and charge carriers in
conducting polymers
polaron
bipolaron
In conducting polymers,
doping is the result of a
redox process.
Charges are bound and
deep in the gap
 A polaron (= radical ion) has both
charge (+e) and spin (±1/2)
 A bipolaron (dication) has charge
(+2e) but no spin
Polarons (A) and bipolarons (B) in PPP
Corso CFMA. LS-SIMat
7
UNIVERSITA’ DEGLI STUDI DI PADOVA
Electrochemical doping of polypyrrole
Doping effect on the optical properties:
electrochromism
Bipolaron absorptions (2)
polaron
Interband absorption (3 eV)
Polaron absorptions (3)
Corso CFMA. LS-SIMat
bipolaro
n
UNIVERSITA’ DEGLI STUDI DI PADOVA
Current Uses of Conducting Polymers
Antistatic Coatings and Conducting Films
Electrochromic Displays?
Memory Devices? (HP Labs/Princeton)
Corso CFMA. LS-SIMat
9
UNIVERSITA’ DEGLI STUDI DI PADOVA
Light Emitting Diodes
1990: Burroughs, Friend (Cambridge)
light emission from undoped
semiconducting polymer
2003: full color range possible
Corso CFMA. LS-SIMat
10
UNIVERSITA’ DEGLI STUDI DI PADOVA
OLEDs Everywhere
2000: first commercial products with OLEDs
Advantage in color spectrum beats solid state materials
Corso CFMA. LS-SIMat
11
UNIVERSITA’ DEGLI STUDI DI PADOVA
Polymeric Photovoltaics
Solar cell efficiencies of ~ 2% (up to 6% in labs)
Corso CFMA. LS-SIMat
12
UNIVERSITA’ DEGLI STUDI DI PADOVA
Thin Film Transistors
2004: both p and n-type materials are known
Critical Advances: Crystallinity and purity
Corso CFMA. LS-SIMat
13
UNIVERSITA’ DEGLI STUDI DI PADOVA
Organic Semiconductors
Molecular Materials:
•polycrystalline
•vapor deposited
Polymeric Materials:
•semi-crystalline
•solution processed
Corso CFMA. LS-SIMat
14
UNIVERSITA’ DEGLI STUDI DI PADOVA
Mobility of organic semiconductors
Corso CFMA. LS-SIMat
15
UNIVERSITA’ DEGLI STUDI DI PADOVA
Motivations for organic electronics
 Organic TFTs show poor performance compared to
silicon CMOS
 But organic TFTs also show the potential for
extremely low cost production (printing)
 Organic TFTs are in a stage of development as
silicon MOSFETs were 30 years ago
 Organic TFT electronics certainly will not replace CMOS
 But organic TFT electronics may open new low cost / low
performance (but high volume!) markets
Corso CFMA. LS-SIMat
16
UNIVERSITA’ DEGLI STUDI DI PADOVA
Polymer electronics
 Low-end, high volume electronic applications, based on:
 Mechanical flexibility
 Low-cost
 Large area
 Potential applications:
 Electronic barcodes
 Memories
 Displays (e-paper)
Corso CFMA. LS-SIMat
17
UNIVERSITA’ DEGLI STUDI DI PADOVA
Rubber Stamped, Large-Area Plastic
Active Matrix Backplanes
10 µm Design Rules, Patterned by Single-Impression Microcontact Printing
PNAS 98(9), 4835-4840 (2001).
Science 291, 1502-1503 (2001).
Corso CFMA. LS-SIMat
18
UNIVERSITA’ DEGLI STUDI DI PADOVA
E-paper
Corso CFMA. LS-SIMat
19
UNIVERSITA’ DEGLI STUDI DI PADOVA
Key feature: solution processing
Corso CFMA. LS-SIMat
20
UNIVERSITA’ DEGLI STUDI DI PADOVA
Materials and technology
Flexible, all-plastic field effect transistor
Corso CFMA. LS-SIMat
21
UNIVERSITA’ DEGLI STUDI DI PADOVA
Technology
Corso CFMA. LS-SIMat
22
UNIVERSITA’ DEGLI STUDI DI PADOVA
Operation of the polymer transistor
Corso CFMA. LS-SIMat
23
UNIVERSITA’ DEGLI STUDI DI PADOVA
Light emitting diode
Organic light emitting diode consists of a thin film (30-500 nm) of
an emitting organic compound sandwiched between appropriate
anode and cathode layers. A relatively modest voltage (typically 2
- 10 Volts) applied across the material will cause it to emit light in
a process called electroluminescence.
Corso CFMA. LS-SIMat
24
UNIVERSITA’ DEGLI STUDI DI PADOVA
Steps of the electroluminescence process




Charge (electrons and holes) injection
Charge transport
Charge recombination and exciton formation
Exciton radiative relaxation
Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.;
Taliani, C.; Bradley, D.D.C.; Dos Santos, D.A.; Brédas, J.L.; Logdlund, M.;
Salaneck, W.R. Nature, 1999, 397, 121.
Corso CFMA. LS-SIMat
25
UNIVERSITA’ DEGLI STUDI DI PADOVA
Mechanism of electroluminescence in organic
semiconductors
1. Charge (electrons and holes) injection
Negative polaron = radical anion
Positive polaron = radical cation
Corso CFMA. LS-SIMat
26
UNIVERSITA’ DEGLI STUDI DI PADOVA
Mechanism of electroluminescence in organic
semiconductors (cont’d)
Corso CFMA. LS-SIMat
27
UNIVERSITA’ DEGLI STUDI DI PADOVA
Some common electroluminescent polymers:
poly(phenylenevinylene)s (PPVs)
Murray, M.M.; Holmes, A.B. in “Semiconducting Polymers, Chemistry, Physics and Engineering” Hadziioannou G
and van Hutten, P.F. Eds. Wiley-VCH 1999, pp1-32Murray, M.M.; Holmes, A.B. in “Semiconducting Polymers,
Corso CFMA. LS-SIMat
28
Chemistry, Physics and Engineering” Hadziioannou G and van Hutten, P.F. Eds. Wiley-VCH 1999, pp1-32
UNIVERSITA’ DEGLI STUDI DI PADOVA
Light emitting metal chelates
Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471
Corso CFMA. LS-SIMat
29
UNIVERSITA’ DEGLI STUDI DI PADOVA
Electroluminescence efficiency
Adachi, C.; Baldo, M.A.; Thompson, M.E.; Forrest S.R. J. Appl. Phys. 2001, 90, 5048
Corso CFMA. LS-SIMat
30
UNIVERSITA’ DEGLI STUDI DI PADOVA
PHOSPHORESCENT OLEDS (PHOLED)s
 The internal quantum efficiency of the phosphorescent OLEDs can be
in principle increased to 100%, because both singlet and triplet
excitons can emit radiatively. OLEDs prepared with these heavy metal
complexes are the most efficient OLEDs reported to date, with internal
quantum efficiencies > 75% and external efficiencies > 20%.
Baldo, M.A.; O’Brien, D.F.; You, Y.;
Shoutstikov, A.; Silbey, S.; Thompson,
M.E.; Forrest, S.R. Nature, 1998,
395, 151
Baldo, M.A.; Lamansky, S.; Burrows,
P.E.; Thompson, M.E.; Forrest, S.R.
Appl. Phys. Lett., 1999, 75, 4
Corso CFMA. LS-SIMat
Zhang, Q.; Zhou, Q.; Cheng, Y.;
Wang, L.; Ma, D.; Jing, X.; Wang, F.
Adv. Mater., 2004, 16, 432
31
UNIVERSITA’ DEGLI STUDI DI PADOVA
Working principle of polymer photovoltaic
cells (OPV)
1. Absorption of incident light
by the active layer
2. Generation of charge carriers
3. Collection of separated
charge carriers at contacts
Separation of positive and
negative charge carriers by
an asymmetry (junction)
Corso CFMA. LS-SIMat
32
UNIVERSITA’ DEGLI STUDI DI PADOVA
Large area printed devices




Active area of a single stripe: 10 cm2
Isc: > 10 mA/cm2 (under 100 mW/cm² simulated AM1.5)
Voc: ~ 0.6 V
FF: < 0.5 (limited by serial resistivity of the substrate)
Corso CFMA. LS-SIMat
33
UNIVERSITA’ DEGLI STUDI DI PADOVA
Working principle of a bulk heterojunction
1. Incoming photons are absorbed
 Creation of excitons on the Donor
/Acceptor
2. Exciton is separated at the donor
/acceptor interface
 Creation of charge carriers
3. Charge carriers within drift distance
reach electrodes
 Creation of short circuit current ISC
1. The “photodoping” leads to splitting of
Fermi levels
 Creation of open circuit voltage VOC
2. Charge transport properties, module
geometry
Pel,max = VOC x ISC x FF
 Fill factor FF
Corso CFMA. LS-SIMat
34
UNIVERSITA’ DEGLI STUDI DI PADOVA
Correlation between morphology and transport
Fullerene traps e-
e- and h+ are able to go through
[Fullerene] < 17% (no Percolation !)
[Fullerene] > 17%
h+ are blocked
[Fullerene] >> 17%
µh,bulk ~ µh polymer
µh,bulk ~ µh polymer
µh,bulk < µh polymer
µe,bulk < µe polymer
µe,bulk > µe polymer
µe,bulk ~ µe polymer
• Upon blending of materials, macroscopic transport
properties of single components may change significantly
Corso CFMA. LS-SIMat
35
UNIVERSITA’ DEGLI STUDI DI PADOVA
Integrated Circuits (IC) based on organics
Corso CFMA. LS-SIMat
36
UNIVERSITA’ DEGLI STUDI DI PADOVA
Block diagram of an identification tag
Corso CFMA. LS-SIMat
37
UNIVERSITA’ DEGLI STUDI DI PADOVA
Design of organic identification tags
 The 48 bit identification IC
Corso CFMA. LS-SIMat
38
Scarica

universita` degli studi di padova - Dipartimento di Scienze Chimiche