UNIVERSITA’ DEGLI STUDI DI PADOVA Laurea specialistica in Scienza e Ingegneria dei Materiali Curriculum Scienza dei Materiali Chimica Fisica dei Materiali Avanzati Part 7b – Photophysics and photochemistry of molecular materials (excitons, energy transfer and electron transfer) Corso CFMA. LS-SIMat 1 UNIVERSITA’ DEGLI STUDI DI PADOVA Exciton Exciton: In some applications it is useful to consider an electronic excitation as a quasi-particles capable of migrating. This is termed an exciton. In organic materials two models are used: the band or wave model (low temperature, high crystalline order) and the hopping model (higher temperature, low crystalline order or amorphous state). Energy transfer in the hopping limit is identical with energy migration. The following consideration follows M. Kasha et al [Pure Appl. Chem. 11 (1965) 371] model of dimer exciton interaction (the band or wave model). Corso CFMA. LS-SIMat 2 UNIVERSITA’ DEGLI STUDI DI PADOVA Exciton model: ground state We consider a weak interaction between 2 molecules (chromophores), so that perturbation theory can be used. The ground state wave-function is G u v u and v are ground state wave-functions of molecules u and v. The Hamiltonian operator is H Hu H v Vuv Hu and Hv are the Hamiltonians of the isolated molecules, Vuv is the intermolecular perturbation potential approximated by (point) dipole-dipole interaction term. The energy of the ground state is Eg Eu Ev u v Vuv u v Corso CFMA. LS-SIMat 3 UNIVERSITA’ DEGLI STUDI DI PADOVA Exciton model: excited state wavefunctions If molecules u and v are the same and have identical environments and * * the excited state wave-functions of the molecules are denoted u and v , * * the excited dimer wavefunctions u v and u v are degenerate. Thus, the excited state wave-function of the dimer must be written E r u* v s u v* with r and s coefficients to be determined. The Schrödinger equation is H r u* v s u v* EE r u* v s u v* Solution for wave-functions (with Hamiltonian matrix elements Huu = Hvv and Hvu = Hvu) 1 E u* v u v* 2 1 E u* v u v* 2 Corso CFMA. LS-SIMat 4 UNIVERSITA’ DEGLI STUDI DI PADOVA Exciton model: excited state energies Corso CFMA. LS-SIMat 5 UNIVERSITA’ DEGLI STUDI DI PADOVA Parallel transition dipoles Corso CFMA. LS-SIMat 6 UNIVERSITA’ DEGLI STUDI DI PADOVA In-line dipoles Corso CFMA. LS-SIMat 7 UNIVERSITA’ DEGLI STUDI DI PADOVA Exciton in asymmetric dimer If the molecules in the dimer are not equivalent because of, say, local perturbations, disorder, etc., the diagonal elements of the Hamiltonian are different. The excitation energies then become: D 2 1 * D1 D2* L* 2 4 D* D1* D2* E* * * 1 2 and the wavefunctions: * cos 1* 2 sin 1 2* * sin 1* 2 cos 1 2* 2 H12 1 2 L* 1 arctan arctan * 2 D H11 H 22 2 Corso CFMA. LS-SIMat * L* and D compete for the exciton delocalization: the first favors, the second opposes it. UNIVERSITA’ DEGLI STUDI DI PADOVA Main mechanisms of energy transfer Corso CFMA. LS-SIMat 9 UNIVERSITA’ DEGLI STUDI DI PADOVA Radiative electronic energy transfer Corso CFMA. LS-SIMat 10 UNIVERSITA’ DEGLI STUDI DI PADOVA Radiative energy transfer: distance dependence Corso CFMA. LS-SIMat 11 UNIVERSITA’ DEGLI STUDI DI PADOVA Radiative energy transfer: efficiency Corso CFMA. LS-SIMat 12 UNIVERSITA’ DEGLI STUDI DI PADOVA Förster mechanism from Fermi “Golden rule” Corso CFMA. LS-SIMat 13 UNIVERSITA’ DEGLI STUDI DI PADOVA Coulombic or dipole-dipole interaction (Förster energy transfer) Corso CFMA. LS-SIMat 14 UNIVERSITA’ DEGLI STUDI DI PADOVA Förster formulation of the dipole-dipole energy transfer Corso CFMA. LS-SIMat 15 UNIVERSITA’ DEGLI STUDI DI PADOVA Level diagrams for energy stransfer Förster mechanism Dexter mechanism Corso CFMA. LS-SIMat 16 UNIVERSITA’ DEGLI STUDI DI PADOVA Electronic exchange energy transfer: Dexter mechanism Corso CFMA. LS-SIMat 17 UNIVERSITA’ DEGLI STUDI DI PADOVA Applications of energy transfer Corso CFMA. LS-SIMat 18 UNIVERSITA’ DEGLI STUDI DI PADOVA Orientation factor Corso CFMA. LS-SIMat 19 UNIVERSITA’ DEGLI STUDI DI PADOVA How to measure energy transfer Corso CFMA. LS-SIMat 20 UNIVERSITA’ DEGLI STUDI DI PADOVA Energetics of the electron transfer process Corso CFMA. LS-SIMat 21 UNIVERSITA’ DEGLI STUDI DI PADOVA Classical theory of electron transfer Corso CFMA. LS-SIMat 22 UNIVERSITA’ DEGLI STUDI DI PADOVA Marcus formulation Corso CFMA. LS-SIMat 23 UNIVERSITA’ DEGLI STUDI DI PADOVA Normal and inverted regions Corso CFMA. LS-SIMat 24 UNIVERSITA’ DEGLI STUDI DI PADOVA Marcus rate plot Corso CFMA. LS-SIMat 25 UNIVERSITA’ DEGLI STUDI DI PADOVA Reorganization energy Corso CFMA. LS-SIMat 26 UNIVERSITA’ DEGLI STUDI DI PADOVA Solvent reorganization energy (examples) Quite a substantial energy! Corso CFMA. LS-SIMat 27 UNIVERSITA’ DEGLI STUDI DI PADOVA Adiabatic and non-adiabatic processes Corso CFMA. LS-SIMat 28 UNIVERSITA’ DEGLI STUDI DI PADOVA Quantum mechanical theory Corso CFMA. LS-SIMat 29 UNIVERSITA’ DEGLI STUDI DI PADOVA Quantum theory - 2 Corso CFMA. LS-SIMat 30 UNIVERSITA’ DEGLI STUDI DI PADOVA Comparison of quantum and classical theories Corso CFMA. LS-SIMat 31 UNIVERSITA’ DEGLI STUDI DI PADOVA Electronic coupling and maximum ET rate Corso CFMA. LS-SIMat 32 UNIVERSITA’ DEGLI STUDI DI PADOVA Distance dependence of the ET rate Corso CFMA. LS-SIMat 33 UNIVERSITA’ DEGLI STUDI DI PADOVA Effect of solvent dynamics Corso CFMA. LS-SIMat 34 UNIVERSITA’ DEGLI STUDI DI PADOVA Photoinduced charge separation and charge recombination Corso CFMA. LS-SIMat 35