UNIVERSITA’ DEGLI STUDI DI PADOVA
Laurea specialistica in Scienza e Ingegneria dei Materiali
Curriculum Scienza dei Materiali
Chimica Fisica dei Materiali Avanzati
Part 7b – Photophysics and photochemistry of molecular
materials
(excitons, energy transfer and electron transfer)
Corso CFMA. LS-SIMat
1
UNIVERSITA’ DEGLI STUDI DI PADOVA
Exciton
 Exciton: In some applications it is useful to consider an
electronic excitation as a quasi-particles capable of migrating.
This is termed an exciton. In organic materials two models are
used: the band or wave model (low temperature, high crystalline
order) and the hopping model (higher temperature, low
crystalline order or amorphous state). Energy transfer in the
hopping limit is identical with energy migration.
The following consideration follows M. Kasha et al [Pure Appl. Chem.
11 (1965) 371] model of dimer exciton interaction (the band or wave
model).
Corso CFMA. LS-SIMat
2
UNIVERSITA’ DEGLI STUDI DI PADOVA
Exciton model: ground state
 We consider a weak interaction between 2 molecules (chromophores),
so that perturbation theory can be used.
 The ground state wave-function is
G   u v
 u and  v are ground state wave-functions of molecules u and v.
 The Hamiltonian operator is
H  Hu  H v  Vuv
Hu and Hv are the Hamiltonians of the isolated molecules,
Vuv is the intermolecular perturbation potential approximated by (point)
dipole-dipole interaction term.
 The energy of the ground state is
Eg  Eu  Ev   u v Vuv  u v
Corso CFMA. LS-SIMat
3
UNIVERSITA’ DEGLI STUDI DI PADOVA
Exciton model: excited state wavefunctions
 If molecules u and v are the same and have identical environments and
*
*
the excited state wave-functions of the molecules are denoted  u and  v ,
*
*
the excited dimer wavefunctions  u v and  u v are degenerate.
 Thus, the excited state wave-function of the dimer must be written
E  r u* v  s u v*
with r and s coefficients to be determined.
 The Schrödinger equation is
H r u* v  s u v*   EE r u* v  s u v* 
 Solution for wave-functions (with Hamiltonian matrix elements Huu = Hvv
and Hvu = Hvu)
1

E 
 u* v   u v* 
2
1

E 
 u* v   u v* 
2
Corso CFMA. LS-SIMat
4
UNIVERSITA’ DEGLI STUDI DI PADOVA
Exciton model: excited state energies
Corso CFMA. LS-SIMat
5
UNIVERSITA’ DEGLI STUDI DI PADOVA
Parallel transition dipoles
Corso CFMA. LS-SIMat
6
UNIVERSITA’ DEGLI STUDI DI PADOVA
In-line dipoles
Corso CFMA. LS-SIMat
7
UNIVERSITA’ DEGLI STUDI DI PADOVA
Exciton in asymmetric dimer
If the molecules in the dimer are not equivalent because of, say,
local perturbations, disorder, etc., the diagonal elements of the
Hamiltonian are different. The excitation energies then become:
 D
2
1 *
D1  D2*  
 L* 
2
 4

D*  D1*  D2*
E*   * 



*
 
1
2

and the wavefunctions:
*  cos   1* 2  sin   1 2*
*  sin   1* 2  cos   1 2*
 2 H12  1
 2 L* 
1
  arctan 

  arctan 
* 
2
 D 
 H11  H 22  2
Corso CFMA. LS-SIMat
*
L* and D compete
for the exciton
delocalization: the
first favors, the
second opposes it.
UNIVERSITA’ DEGLI STUDI DI PADOVA
Main mechanisms of energy transfer
Corso CFMA. LS-SIMat
9
UNIVERSITA’ DEGLI STUDI DI PADOVA
Radiative electronic energy transfer
Corso CFMA. LS-SIMat
10
UNIVERSITA’ DEGLI STUDI DI PADOVA
Radiative energy transfer: distance dependence
Corso CFMA. LS-SIMat
11
UNIVERSITA’ DEGLI STUDI DI PADOVA
Radiative energy transfer: efficiency
Corso CFMA. LS-SIMat
12
UNIVERSITA’ DEGLI STUDI DI PADOVA
Förster mechanism from Fermi “Golden rule”
Corso CFMA. LS-SIMat
13
UNIVERSITA’ DEGLI STUDI DI PADOVA
Coulombic or dipole-dipole interaction
(Förster energy transfer)
Corso CFMA. LS-SIMat
14
UNIVERSITA’ DEGLI STUDI DI PADOVA
Förster formulation of the dipole-dipole
energy transfer
Corso CFMA. LS-SIMat
15
UNIVERSITA’ DEGLI STUDI DI PADOVA
Level diagrams for energy stransfer
 Förster mechanism
 Dexter mechanism
Corso CFMA. LS-SIMat
16
UNIVERSITA’ DEGLI STUDI DI PADOVA
Electronic exchange energy transfer:
Dexter mechanism
Corso CFMA. LS-SIMat
17
UNIVERSITA’ DEGLI STUDI DI PADOVA
Applications of energy transfer
Corso CFMA. LS-SIMat
18
UNIVERSITA’ DEGLI STUDI DI PADOVA
Orientation factor
Corso CFMA. LS-SIMat
19
UNIVERSITA’ DEGLI STUDI DI PADOVA
How to measure energy transfer
Corso CFMA. LS-SIMat
20
UNIVERSITA’ DEGLI STUDI DI PADOVA
Energetics of the electron transfer process
Corso CFMA. LS-SIMat
21
UNIVERSITA’ DEGLI STUDI DI PADOVA
Classical theory of electron transfer
Corso CFMA. LS-SIMat
22
UNIVERSITA’ DEGLI STUDI DI PADOVA
Marcus formulation
Corso CFMA. LS-SIMat
23
UNIVERSITA’ DEGLI STUDI DI PADOVA
Normal and inverted regions
Corso CFMA. LS-SIMat
24
UNIVERSITA’ DEGLI STUDI DI PADOVA
Marcus rate plot
Corso CFMA. LS-SIMat
25
UNIVERSITA’ DEGLI STUDI DI PADOVA
Reorganization energy
Corso CFMA. LS-SIMat
26
UNIVERSITA’ DEGLI STUDI DI PADOVA
Solvent reorganization energy (examples)
Quite a substantial energy!
Corso CFMA. LS-SIMat
27
UNIVERSITA’ DEGLI STUDI DI PADOVA
Adiabatic and non-adiabatic processes
Corso CFMA. LS-SIMat
28
UNIVERSITA’ DEGLI STUDI DI PADOVA
Quantum mechanical theory
Corso CFMA. LS-SIMat
29
UNIVERSITA’ DEGLI STUDI DI PADOVA
Quantum theory - 2
Corso CFMA. LS-SIMat
30
UNIVERSITA’ DEGLI STUDI DI PADOVA
Comparison of quantum and classical theories
Corso CFMA. LS-SIMat
31
UNIVERSITA’ DEGLI STUDI DI PADOVA
Electronic coupling and maximum ET rate
Corso CFMA. LS-SIMat
32
UNIVERSITA’ DEGLI STUDI DI PADOVA
Distance dependence of the ET rate
Corso CFMA. LS-SIMat
33
UNIVERSITA’ DEGLI STUDI DI PADOVA
Effect of solvent dynamics
Corso CFMA. LS-SIMat
34
UNIVERSITA’ DEGLI STUDI DI PADOVA
Photoinduced charge separation and
charge recombination
Corso CFMA. LS-SIMat
35
Scarica

universita` degli studi di padova - Dipartimento di Scienze Chimiche