Paola Ricciardi Elementi di acustica e illuminotecnica Capitolo 1 La percezione della luce, le grandezze fotometriche e la prestazione visiva 1 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Capitolo 1 Contenuti • • • • • • • • L’occhio umano Spettro del visibile Visione diurna e notturna Campo visuale e acuità visuale Grandezze fotometriche Proprietà ottiche dei materiali La prestazione visiva Cenni di colorimetria ACCEDI ACCEDI ACCEDI ACCEDI ACCEDI ACCEDI ACCEDI ACCEDI 2 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl L’occhio umano Il funzionamento dell’occhio umano 3 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl L’occhio umano Schema della retina 4 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Spettro del visibile Spettro elettromagnetico 5 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Spettro del visibile - i raggi di piccola lunghezza d’onda (blu) vengono fortemente deviati e convergono un po’ prima della retina quelli di grande lunghezza d’onda (rosso) convergono un po’ dopo, mentre quelli la cui lunghezza d’onda è circa 555 nm (giallo) formano un’immagine nitida direttamente sulla retina. Paola Ricciardi, Elementi di acustica e illuminotecnica 6 Copyright © 2009 – The McGraw-Hill Companies srl Visione diurna e notturna P(λ1)·K(λ1) = P(λ2)·K(λ2) V (λ)= K (λ)/Kmax Paola Ricciardi, Elementi di acustica e illuminotecnica K(λ) = Kmax per λ= 555 nm Kmax = 683 lumen/Watt 7 Copyright © 2009 – The McGraw-Hill Companies srl Il campo visuale e l’acuità visuale Schema di funzionamento della visione Paola Ricciardi, Elementi di acustica e illuminotecnica 8 Copyright © 2009 – The McGraw-Hill Companies srl Il campo visuale e l’acuità visuale L’acuità visuale è la capacità dell’occhio di percepire e distinguere i dettagli degli oggetti. L’acuità è uguale ad 1 se l’occhio distingue due punti distanti tra loro 1 mm posti a 3.44 m dall’osservatore, quindi con un angolo di visuale α uguale ad 1.’ L’acuità visuale dipende dalla luminanza degli oggetti osservati, nonché da quella dello sfondo. 9 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche 10 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche Il FLUSSO LUMINOSO Φ è definito come l’energia luminosa che attraversa l’unità di superficie nell’unità di tempo. Se usassimo un’analogia con il flusso di un fluido, il flusso corrisponderebbe ad una portata in l/s di una corrente. Per radiazioni monocromatiche si può scrivere: Φλ =K(λ)P (λ) [Watt] Pertanto se consideriamo una sorgente emettente con una potenza Φλ [W] il flusso luminoso Φl per sorgenti monocromatiche risulta essere: Φl = Vλ Φλ [lumen] Dove Vλ è il coefficiente di visibilità (Vλ= lumen/Watt [lm/W]). Per sorgenti policromatiche: l 780 nm dP ( ) K ( ) d d 380 nm dP ( ) potenza energetica emessa per lunghezza d’onda. d 11 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche INTENSITA’ LUMINOSA I rappresenta la quantità di flusso luminoso emessa in una specifica direzione. E’ simile al voltaggio nei sistemi elettrici ed alla pressione in un sistema fluido. Data una sorgente puntiforme, l’intensità luminosa (I) esprime il flusso emesso da tale sorgente infinitesima, nell’angolo solido elementare attorno ad una data direzione r. = d / d [candele] Dove d = flusso luminoso emesso [lm] d= angolo solido [sr] = candela [cd] 1 cd= Kmax (1/683) [W/sr] 12 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche I punti estremi dei vettori intensità che caratterizzano una sorgente individuano nello spazio un solido, detto solido fotometrico. Spesso i solidi fotometrici presentano delle asimmetrie rispetto ad uno o più assi, in tal caso il solido è individuabile mediante l’utilizzo di uno o più diagrammi polari piani, ottenuti intersecando la superficie fotometrica con uno o più piani passanti per l’asse di simmetria. Si ottengono cosi le curve fotometriche. curva fotometrica di una lampada ad incandescenza 13 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche ILLUMINAMENTO E rappresenta il flusso luminoso incidente su una superficie per unità di area della stessa (dS): E = d l / dS [lux] L'illuminamento orizzontale in un punto di un piano non perpendicolare alla direzione dell'intensità luminosa se il piano è orizzontale (dS0=r2d/cos) è: E0 = d l / dS0 [lux] E0 dl 1 cos d r 2 Essendo l’intensità luminosa =d/d e la distanza r = h /cos, l’illuminamento risulta: E0 I cos h2 L’illuminamento in un punto di un piano perpendicolare alla direzione di incidenza della luce è dato dalla seguente espressione: I Ep Paola Ricciardi, Elementi di acustica e illuminotecnica h2 14 Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche La LUMINANZA L misura la luminosità e la quantità direzionale dell’intensità luminosa. Nello specifico la luminanza di una sorgente nella direzione viene definita come il flusso luminoso emesso per unità di area proiettata normalmente alla direzione di propagazione e per unità di angolo solido: d 2 dI L dA cos d dA cos [nit] Nel caso di superficie perfettamente diffondente, che segue la legge di Lambert la luminanza diventa: L = L = Ln [nit] 15 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche La RADIANZA M rappresenta la quantità totale d M di flusso luminoso riflesso o trasmesso da una dA sorgente. Se ci si riferisce ad una superficie lambertiana si ha: M = L [lux s.b.] Se r è il coefficiente di riflessione della superficie lambertiana si ha: M = r E [lux s.b.] Se r è uguale a 1 e ciò avviene per una superficie perfettamente riflettente lambertiana (bianca) si ha: M = E [lux s.b.] Se la superficie lambertiana ha un fattore di trasmissione : Ml=E L=E/ 16 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Le grandezze fotometriche GRANDEZZA SIMBOLO FOTOMETRICA ESPRESSIONE UNITA’ DI MISURA MATEMATICA Flusso luminoso K()P () lumen [lm] Intensità luminosa I d/d candela [lm/sterad] Illuminamento E d/dA lux [lm/m2] Luminanza L dI/dAcos nit [cd/m2] Radianza M d/dA lux s.b. [lm/m] 17 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Proprietà ottiche dei materiali Radiazione solare incidente su un corpo 18 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Proprietà ottiche dei materiali Definita a la quota di flusso assorbito, si definisce FATTORE DI ASSORBIMENTO , caratteristico del materiale in oggetto, il rapporto: Dove i è il flusso incidente. a i Le superfici colorate hanno <1 poiché trattengono la quota di energia delle radiazioni con lunghezza d’onda che sono presenti nella luce incidente, ma non sono riflesse dalla superficie colorata. 19 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Proprietà ottiche dei materiali Si definisce il FATTORE DI RIFLESSIONE come il rapporto tra flusso riflesso r e flusso incidente i: Riflessione speculare r i Riflessione mista Riflessione diffusa 20 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Proprietà ottiche dei materiali Il FATTORE DI TRASMISSIONE è dato dal rapporto tra flusso trasmesso t e flusso incidente i: t i Nei materiali trasparenti la radiazione incidente subisce il fenomeno della rifrazione ottica che consiste nel cambiamento della traiettoria di propagazione ogni volta che si verifica un transito da un mezzo ad un altro. Legge di Snell (1591-1626): n1 sen1 = n2sen 2 In cui n1 ed n2 sono gli indici di rifrazione assoluti dei due mezzi, dati dal rapporto tra la velocità della luce nel vuoto c e la velocità della luce nel mezzo considerato c’. 21 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva Il concetto di prestazione visiva (visual performance) fu introdotto da Weston nel 1949, intendendo con tale termine il rapporto tra il lavoro svolto ad un dato illuminamento e quello svolto con un livello di illuminamento ideale. Di fatto Weston individuò una serie di fattori che influenzavano tale prestazione: •luminanza e colore del compito visivo •contrasti di luminanza e di colore tra il dettaglio e lo sfondo •dimensioni angolari e forma del dettaglio •posizione del dettaglio nel campo visivo •efficienza dell’apparato visivo dell’osservatore •tempo di osservazione •grado di attenzione •difficoltà del compito visivo Paola Ricciardi, Elementi di acustica e illuminotecnica 22 Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva Il CONTRASTO DI LUMINANZA C può essere espresso mediante l'equazione: L2 L1 C • L2 è la luminanza dell'oggetto; L1 • L1 è la luminanza dello sfondo. I contrasti di luminanza sono essenziali ai fini della percezione visiva perché senza un sufficiente valore di contrasto nulla si può vedere. Il problema è però quello di ottenere un giusto equilibrio di luminanze. 23 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva I LIVELLI DI ILLUMINAMENTO si possono misurare con il luxmetro in fase di collaudo e con alcune procedure di calcolo in fase di progetto. L’illuminamento (lux) si esprime come la quantità di flusso luminoso (lumen) per ogni metro quadrato di superficie investita dai raggi luminosi. I livelli di illuminamento. 24 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva LIVELLI DI ILLUMINAMENTO per luoghi e attività e compiti visivi proposti dalla CIE nel 1987 in base agli studi di Weston. 25 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva L’ABBAGLIAMENTO è uno dei fattori del progetto illuminotecnico che richiede più attenzione. È la condizione in cui, per effetto di luminanze molto elevate o di differenze di luminanze troppo accentuate la percezione visiva risulta difficile o si viene a creare un senso di "discomfort". Si può determinare l’abbagliamento, ad esempio, in funzione dei valori di contrasto: •C = 2-2,5 valori di contrasto ottimali •C = 9-12 abbagliamento METODO TABELLARE CIE Lb L p 0 ,25 L2 UGR 8 log 10 2 L p b cdm-2, 1 E calcolata con ind è la luminanza di sfondo in (Eind è l’illuminamento verticale); è la luminanza in cdm-2 è l’angolo solido, in steradianti, è l’indice di posizione di Guth, che è funzione dello scostamento angolare rispetto all’asse della visione, per ogni singolo apparecchio di illuminazione. 26 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva LA TEMPERATURA DI COLORE rappresenta il livello termico che deve raggiungere il corpo nero per generare luce della stessa tonalità della luce prodotta dalla sorgente in esame. Diagramma di Kruithof 27 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl La prestazione visiva L’acuità visuale migliora con l’aumento della DURATA DELL’ESPOSIZIONE da 400 ms a 600 ms. Questo fenomeno è particolarmente evidente in circostanze di breve durata, per esempio inferiori ad 1 secondo, in cui fattori come il contrasto e la luminanza determinano sempre più l’acuità visuale. 28 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Cenni di colorimetria La colorimetria è la scienza che classifica i colori. I primi studi in questa disciplina furono condotti da eminenti scienziati quali Isaac Newton, Thomas Young e James Clerk Maxwell. I sistemi oggi utilizzati per la valutazione oggettiva dei colori sono essenzialmente due: - Il SISTEMA CIE (Commission Internationale pour l’Eclarage) - Il SISTEMA MUNSELL A livello italiano la denominazione ufficiale dei colori è definita dalla NORMA UNI 9810:1991 . La sensazione visiva, a differenza di quella uditiva, non permette di distinguere in un fascio luminoso policromatico le varie componenti monocromatiche. Per decomporre un fascio di radiazioni policromatiche nelle sue componenti si utilizza uno strumento normalizzato denominato colorimetro. 29 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Cenni di colorimetria Il SISTEMA COLORIMETRICO CIE Le quantità X, Y e Z sono chiamate componenti tricromatiche e possono essere definite con rapporti adimensionali x, y, z, detti coordinate tricromatiche: x X X Y Z z Z X Y Z y Y X Y Z 30 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Cenni di colorimetria Il SISTEMA COLORIMETRICO CIE I colori con identiche coordinate appaiono equivalenti da un punto di vista cromatico: i colori rossi ricadono in una certa zona, i verdi in un’altra e così via. La curva a campana è ottenuta congiungendo i punti rappresentativi delle radiazioni monocromatiche da 380 a 780 nm. 31 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Cenni di colorimetria Il SISTEMA DI MUNSELL I colori di Munsell sono classificati secondo tre qualità: a) TONO O TINTA: è legato alla lunghezza d’onda dominante ed individua il colore con cui viene visto ad esempio un oggetto (rosso, giallo, blu etc.) b) PUREZZA O SATURAZIONE: è la vivacità del colore che quindi si differenzia dalla visione del grigio (solo una lunghezza d’onda monocromatica può fornire un colore puro; lo stesso colore può essere ottenuto con luci diverse, ma la sua “saturazione” diviene sempre più modesta). c) LUMINANZA O LUMINOSITA’: esprime l’intensità luminosa nella direzione della visione. 32 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl Cenni di colorimetria Il SISTEMA DI MUNSELL 33 Paola Ricciardi, Elementi di acustica e illuminotecnica Copyright © 2009 – The McGraw-Hill Companies srl