A new proposal to measure O(100) events _ + + of K p n n at the CERN SPS Riccardo Fantechi INFN - Sezione di Pisa On behalf of the P326 Collaboration CERN, Dubna, Ferrara, Firenze, Frascati, Mainz, Merced, Moscow, Napoli, Perugia, Protvino, Pisa, Roma, Saclay, Sofia, Torino July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 1 Outline • Physics motivations • The goals • The beam • The detector July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 2 Physics motivations • K+→p+ – – – – _ nn: process predicted with high accuracy Short distance only No EM penguins Matrix element derived from experiment (K+→p0 e+n) There is an intrinsic theoretical error of 5-7% on the amplitude, due to charm quark loops, which can be reduced to few % _ • BR(K+→p+ nn) = (8.0 1.1) 10 –11 in the SM @ NLO Constrain the CKM triangle only from the Kaon sector, _ together with future K0→p0 nn experiments July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 3 Possibly the Cleanest SM test • In K pnn the phase b derives from Z0 diagrams (DS=1) whereas in A(J/y KS) originates in the Bd0 Bd0 box diagram (DB=2) • Any non-minimal contribution to Z0 diagrams would reflect on a violation of the relation: (sin 2b ) K pnn (sin 2b ) BJ /y K S • A deviation from the predicted rates of SM would be a clear indication of new physics • Complementary programme to the high energy frontier: – When new physics will appear at the LHC, the rare decays may help to understand the nature of it July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 4 Some BSM Predictions BR( K + p +nn ) 1011 SM 8.0 ± 1.1 MFV 19.1 hep-ph/0310208 EEWP 7.5 ± 2.1 NP B697 133 EDSQ 15 hep-ph/0407021 MSSM 40 hep-ph/0408142 July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 5 K+→p+ _ nn : State of the art 3 events from E949 ek,Dmd,sin(2b) (All DF=2 processes) Stopped K ~0.1 % acceptance _ + + BR(K → p nn ) = 1.47+1.30-0.89 × 10-10 Compatible with SM within errors hep-ex/0403036, PRL93 (2004) July 23rd, 2005 HEPP - EPS 2005 100 events, SM Riccardo Fantechi 100 events, E949 value 6 Prospects on K+→p+ _ nn • Decays at rest: – Window of opportunity to accumulate more data at BNL until 2010 (before KOPIO data taking starts) – Letter of intent for an experiment with stopped kaon decays at JPARC (>2009) – Established technique… – …but hard to extrapolate to O(100) events • Decays in flight – Large acceptances, good photon rejection – Separated beam: FNAL CKM (Approved but Not Ratified) • Limited to about PK<30 GeV/c – Un-separated beam: FNAL-P940 (now canceled) – Un-separated beam: CERN-P326 (expected data in 2009) • Limited by rate in beam trackers July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 7 • _ P326 - The goal Collect 80 K+→ p+ nn events in about two years of data taking for: – 4 1012 Kaon decays/SPS year _ – BR( K+→ p+ nn ) ~ 10-10 – Acceptance ~ 10% • Decay in flight, unseparated beam – Higher K momentum • Larger yield of K decays • Better veto performance – Higher acceptance – Different systematics – Disadvantage: • p/K ratio ~ 10/1 • 1 Ghz rate in the beam tracker ahead of the decay volume • Keep pions and pion decays inside a “beam pipe” July 23rd, 2005 HEPP - EPS 2005 Region I K+ →p+p0 Region II K+ →p+nn K+ →p+p0p0 K+ →p+p+p Riccardo Fantechi 8 Background reduction • Main background from Km2 and K+→p+ p0 • 3 handles for background reduction: – Missing mass cuts – Photon vetoes – Particle identification • Redundant measurements to control the background July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 9 Kinematics m 2 miss m + mp 2( E K Ep pK pp cos K p ) 2 K 2 Measured quantities • Resolution and MS tails for two and three body decays • Cut on m2miss around p0 mass and on m2miss >0 – To have a S/N 10/1, need to cut at Dm2 ~ 8 10-3 GeV2/c4 • Need a resolution of ~ 10-3 GeV2/c4 – On p momentum: <1% a 30 GeV/c • redundant p momentum measurement with tracker in vacuum – On K momentum: 0.3% • performant beam tracker – On K-p angle: 50-60 mrad • Contributions to background rejection 510-3 to K+ → p0 p+ 210-5 to K+ → m+ n July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 10 Vetoes • Advantage using high momentum – 75 Gev/c K+ and p+ momentum < 35 Gev/c, then 40 Gev of EM energy to be detected • Require at least 10-8 rejection for p0 • Low energy, large angle photons (low inefficiency) correlated with high energy ones at small angle • Wide coverage of the photon angles – Hermetic up to 50 mrad – Few blind zones where photons are correlated with high energy ones at small angles – Possible to have an average p0 inefficiency of better than 10-8 • Use different devices for different angles – Small calorimeters to cover the hole inside the LKr calo – The LKr calorimeter itself for up to 15 mrad – 13 annular calorimeters (either lead/scintillator or lead/sci fibers calorimeters) along the decay region » Inefficiency for low energies (< 1Gev/c) photons shown to be enough (10-4) July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 11 Particle ID • Electron ID from the NA48 Liquid Krypton calorimeter – Reject Ke3, Ke4 • Muon ID from EM, mu+hadronic calorimeter – Reject Km2, Km2g, Km3 – A RICH is needed to have redundant measurement and improve rejection • Require at least a rejection factor of 105 on muons July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 12 New high-intensity K+ beam for NA48/3 Beam: SPS protons per pulse on T10 Duty cycle (s./s.) Present K12 (NA48/2) New HI K+ > 2006 Factor wrt 2004 1 x 1012 3 x 1012 3.0 4.8 / 16.8 Solid angle (msterad) Already Available 1.0 0.40 16 40 Av. K+momentum <pK> (GeV/c) 60 75 Total : 1.35 Mom. band RMS: (Dp/p in %) 4 1 ~0.25 7.0 20 2.8 Total beam per pulse (x 107) per Effective spill length MHz MHz/cm2 (gigatracker) 5.5 18 2.5 250 800 40 ~45 (~27) Eff. running time / yr (pulses) 3* x 105 3.1 * 105 1.0 K+ decays per year 1.0x1011 4.0x1012 40 Area at Gigatracker (cm2) July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi ~45 (~27) ~16 (~10) 13 P326 Detector Layout 1.5 m p+ K+ n n 800 MHz (p/K/p) 10 MHz Kaon decays Only the upstream detectors Are exposed to the 800 MHz beam July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 14 • • • • • • • • • Detectors CEDAR – Differential Cherenkov counter for positive kaon identification GIGATRACKER – To Track the beam before it enters the decay region ANTI – Photon vetoes surrounding the decay tank SPECTROMETER – 2 magnets + 6 straw chambers to track the kaon decay products RICH – For redundant muon/pion separation CHOD – Fast hodoscope to make a tight kaon-pion time coincidence (~100 ps) LKR – Forward photon veto and e.m. calorimeter MAMUD – Hadron calorimeter, muon veto and sweeping magnet SAC – Small angle photon vetoes July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi Challenging detector! Ineff. 10-4 for Eg>100 Mev Ineff. 10-5 for Eg> 1 Gev Get rid of the tails form MS Inefficiency: 10-2 Ineff. <10-5 for Eg> 1 Gev 10-3 electron inefficiency Inefficiency: 10-5 Ineff. 10-6 for Eg> 6 Gev 15 Gigatracker • Challenging beam tracker ahead of the decay region • Specifications: – Momentum resolution to ~ 0.5 % – Angular resolution ~ 10 mrad – Time resolution ~ 100 ps – Minimal material budget – Perform all of the above in • 800 MHz hadron beam, 60 MHz / cm2 • Hybrid Detector: – SPIBES (Fast Si micro-pixels bonded to r/o ICs) • Momentum measurement • Facilitate pattern recognition in subsequent FTPC • Time coincidence with CHOD – FTPC (NA48/2 KABES micromegas technology with FADC r/o) • Track direction July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 16 Time Schedule • 2004 – Parasitic tests in NA48/2 beam done – Startup of working groups – Submission of a Letter of Intent for the Villars meeting From the Villars report to the SPSC • 2005 – Gigatracker R&D started – Preparation of the proposal – Proposal submitted to SPSC – Evaluation process for the proposal started • 2006-2008 – Costruction, Installation and beam-tests 2009-2010 – Data Taking • July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 17 Conclusions • An experiment to measure the decay in flight _ K+→p+ nn is being proposed at CERN • The goal is to collect O(100) events in 2 years • The experiment will use some of the existing facilities of NA48 – It is not definitely a continuation of NA48 • There are new detectors with challenging aspects • The Collaboration is being formed July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 18 Spares July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 19 Physics Introduction: CKM matrix and CP-Violation Quark mixing is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix d ' Vud Vus Vub d s ' V V V s cd cs cb b ' V V V b ts tb td KM mechanism: Ng=2 Nphase=0 No CP-Violation Ng=3 Nphase=1 CP-Violation Possible e.g. Im lt= Im Vts*Vtd ≠ 0 CP KM mechanism appears to be the main source of CP-violation in quarks: •Direct-CP Violation exists: e’/e 0 NA48, KTeV •CP violation in the B meson sector: ACP(J/y Ks), BaBar, Belle Now look for inconsistencies in SM using independent observables affected by small theoretical uncertainties and different sensitivity to new physics July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 20 Kaon Rare Decays and the SM (holy grail) |Vtd| Kaons provide quantitative tests of SM independent from B mesons… …and a large window of opportunity exists! Im lt = A2 l5 h Re lt = A2 l5 r July 23rd, 2005 G. Isidori HEPP - EPS 2005 Riccardo Fantechi 21 K→p nn : Theory in Standard Model 2 2 Im lt Re lc Re lt B ( K p nn ) + 5 X ( xt ) + 5 X ( xt ) + Pc ( X ) l l l + B ( K L0 + Im l p nn ) L 5 t X ( xt ) l l Vus lc Vcs*Vcd lt Vts*Vtd charm contribution top contributions 3 2 Br ( K + p 0e+n ) 8 + rK + l 2 4 2p sin W July 23rd, 2005 2 0 HEPP - EPS 2005 The Hadronic Matrix Element is measured and isospin rotated (~10% correction) Riccardo Fantechi 22 Predictions in SM + + BR( K p nn ) (8.0 1.1) 10 11 (latest CKM workshop) Error ~ 14% Mainly parametric Theory error due to charm (Buras04): Pc ( X ) 0.389 0.033(mc ) 0.045( mc ) 0.010( s ) For long distance contribution see:"LIGHT-QUARK LOOPS IN K->PI NU NU" By G. Isidori, C.Smith, F.Mescia. e-Print Archive: hep-ph/0503107 Largest contribution from scale error. To be reduced by NNLO calculation BR( K L0 p 0nn ) (3.0 0.6) 1011 (Buras et al. 04) The error is almost purely parametric July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 23 K0L p0nn :State of the Art Data MC BG Sum Lnp0 MC XLp0 MC Signal MC KTeV 1997 Data Dalitz Analysis Still far from the model independent limit: BR(K0 → p0nn) < 4.4 × BR(K+p+nn) ~ 1.4 × 10-9 Grossman & Nir, PL B407 (1997) BR(KL p0nn) 5.9 x 10-7 (p0eeg, 1997 Data) [PRD 61,072006 (2000)] BR (KL p0nn) 1.6 x 10-6 (p0gg, 1997 1 Day) [PLB 447, 240 (1999)] July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 24 Prospects • K0L p0nn – – – – • K0L p0ee(mm) – – – – – • Large window of opportunity exists. Upper limit is 4 order of magnitude from the SM prediction Expect results from data collected by E391a (proposed SES~3 10-10) Next experiment KOPIO@ BNL Long distance contributions under better control Measurement of KS modes by NA48/1 bound the KL measurement KS rates to be better measured (KLOE?) Background limited (study time dep. Interference?) 100-fold increase in kaon flux to be envisaged K+ p+nn – – – – July 23rd, 2005 The situation is different: 3 clean events are published Experiment in agreement with SM Next round of exp. need to collect O(100) events to be useful Move from stopped to in flight experiments HEPP - EPS 2005 Riccardo Fantechi 25 Message from the CERN Director General to the staff (Jan 05) • The top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007 • “…Meanwhile, the natural break we have in the fixed-target programme in 2005 is already allowing the community to develop a wellfocused programme for the future” The possible Non-LHC Future Programme was reviewed by the SPSC in Villars (September 22-27, 2004) July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 26 John Dainton Villars 2004 October 7th 2004 CERN seminar SPSC@Villars ● new rare decay frontier in K physics at CERN ● new experiments planned for Kπνν important ● support R&D now for K+π +νν results ≤ 2010 From the Villars Report… CERN-SPSC-2005-010 SPSC-M-730 February 28, 2005 July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 28 Riduzione del background m 2 miss m + mp 2( E K Ep pK pp cos K p ) 2 K 2 Measured quantities • Taglio sulla m2miss intorno alla massa del p0 – – – – Inefficienza sui veti di 10-8 Inefficienza sui m di 5 10-6 Rapporto S/N 10/1 con accettanza >1 Il taglio intorno alla massa del p0: Dm2 ~ 8 10-3 GeV2/c4 • Risoluzione necessaria ~ 10-3 GeV2/c4 – Risoluzione impulso K: 0.3% – Risoluzione impulso p: <1% a 30 GeV/c – Risoluzione angolo K-p: 50-60 mrad July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 29 DPp (Spectrometer 2)GeV/c Gaussian MSC (old) DPp (Spectrometer 1) GeV/c DPp (Spectrometer 2) GeV/c NA48/3 simulation Non-Gaussian MSC DPp (Spectrometer 1) GeV/c New MSC REGION I Uncorrelated non gaussian tails REGION II July 23rd, 2005 2 (GeV/c HEPP -M(miss) EPS 2005 Riccardo Fantechi 2)2 30 Acceptance K+ momentum: (75.0 ± 0.8) GeV/c P = [15- 35] GeV/c (RICH) P = [10 - 40] GeV/c 4×1012 decays/year @ BR = 10-10 July 23rd, 2005 Region I Region II 2 0. mmiss 0.01 (GeV / c 2 )2 2 0.026 mmiss 0.068 (GeV / c 2 )2 2.8 × 102 14.8 × 102 3.9 × 102 21.7 × 102 I+II (RICH) 70 events/year HEPP - EPS 2005 Riccardo Fantechi 31 Rapporti segnale/fondo Segnale: K+→ p+ n n (BR≈ 8.0 × 10-11 ) BR July 23rd, 2005 Veto rej. Kinem. Rej. Acceptance Bgnd m+n 63 % 5 10-6 2 10-6 p+p0 21 % 3 10-7 2 10-5 27% ~1 p+p+p 6% 10-6 (2 10-5) 20% ~1 p+p0p0 2% <10-8 (2 10-5) 15% <<1 p0m+n 3% Non crea problemi <<1 p0e+n 5% e/p <10-3 <<1 30%(20%*) 8(<1*) HEPP - EPS 2005 Riccardo Fantechi * RICH 32 CEDAR Db b Db K/p m12 m22 b 2 p2 Cedar-W Cedar-N p (GeV / c ) July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 33 8 Condensors “focus” the photons on the detectors (32-channel linear array multianode PM) Simulation allows to calculate the image size and to optimise location of the photon detectors 4000 + p + 3500 K Number of entries 3000 2500 Diaphragm 1mm 2000 1500 1000 500 0 90 92 94 96 98 100 102 104 106 108 Radial distance of g at diaphragm [mm] July 23rd, 2005 Tagging eff. ≈ 90% 34 Misident. prob. < 1% HEPP - EPS 2005 Riccardo Fantechi 110 FTPC SPIBES2 SPIBES1 GIGATRACKER • momentum: use SP1 and SP2 to measure y = 40 mm displacement. Assuming σp~50µm from pixel and 350µm thick Si (0.37% X0) σ = (σp√2 ‡ σMS ) ⁄ 40 mm = 0.25% • direction: use SP2 and FTPC. Assuming σp~100µm from pixel and similar from FTPC and no MS from FTPC (from SP2 no influence) ∆х= σp√2 ⁄ 12.4m = 11µrad • time resolution: essential to obtain a low background due to accidental hits and to allow the pattern recognition. Need 100 ps for S/B=10 6.25 12.45 m July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 35 FTPC (KABES+FADC) • • NA48/2 – KABES has achieved very good performance – Position resolution ~ 70 micron – Time resolution ~ 0.6 ns – Rate per micro-strip ~ 2 MHz NA48/3 – Intensity ~ 10 higher per unit area – 600 ns drift – The long drift (600 ns) makes a standalone pattern recognition very difficult or just impossible ( That’s why we plan to have SPIBES in front) – To reduce double pulse resolution and improve the time resolution one has to reduce the pulse duration and possibly read-out every micro-strip with 1 GHz FADC July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 36 Doppio spettrometro July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 37 Straw 2.3m, Ø9.6 mm Kapton films 12mm+25mm Ogni half-layer: 112 straws per DCH: 4×4×112=1792 Perdita di accettanza dovuta al foro centrale: <10% July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 38 Doppio spettrometro ≈11 000 straws, 130 mm di risoluzione per vista July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 39 Anticontatori • • • • • • Set of ring-shaped photon vetoes surrounding the decay tank Specification: inefficiency to detect photons above 100 MeV < 10-4 The NA48 ANTI’s (AKL) need to be replaced Extensive R&D performed by American and Japanese groups Claims that inefficiency as low as 10-5 can be achieved Baseline solution: Lead/ Plastic scintillator sandwich (1-2 mm lead / 5 mm plastic scintillator) • SPACAL (a la Kloe) option also being studied CKM design July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 40 Anticontatori Questo rivelatore deve consentire di vetare i p0, con inefficienza massima tollerabile ≈10-7, ovvero, mediamente, dell’ordine di 10-4 o meglio sul singolo fotone. Naturalmente, la capacità di veto dipende dall’energia del g e l’effetto complessivo richiede un’integrazione sull’accettanza, nonchè la combinazione con il segnale dal LKr e dai piccoli rivelatori (SAC e IRC) a piccolo angolo. Da una simulazione della cinematica, assumendo ragionevoli inefficienze per i vari rivelatori, si ottiene una inefficienza media per il p0 di circa 10-8 dopo il taglio sull’impulso del p+. Il contributo maggiore all’inefficienza media viene dall’1% circa di fotoni che mancano i rivelatori July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 41 Anticontatori Soluzione alla CKM • • • • • • 1mm Pb/5 mm scintillatore (+WLS fiber) 80 layers, 16 X0 13 corone circolari di 16 settori (22.50) Superficie totale vista dai fotoni: 28 m2 Superficie totale di Pb e Sci: 2270 m2 Lunghezza delle fibre per la raccolta di luce: 220 Km • 13 x 64 = 832 fototubi • Montaggio tra due sezioni del tubo a vuoto in tasche sotto vuoto Rext = 1100 mm Rint = 880 mm – Per mantenere il vuoto del tubo di decadimento migliore di 10-7 mbar July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 42 Anticontatori Soluzione alla KLOE • 0.5mm Pb/ 1mm fibre scintillanti • Spessore 24 cm 20 X0 • 13 corone circolari, in U o in anello (da studiare) • Superficie totale del Pb: 5600 m2 • Lunghezza delle fibre: 4100 Km • 96x13=1248 fototubi July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 43 Odoscopio veloce L’idea è quella di usare Glass Multigap RPCs, sullo stile di quanto realizzato nel sistema di TOF di ALICE A questo rivelatore infatti è richiesto di essere efficiente (>99%) e di avere un’ottima risoluzione temporale (50ps) in modo da ridurre al massimo la possibilità di associazioni accidentali fra il pione di decadimento ed il K che lo origina. E’ necessario pero’ valutare l’ efficienza di questi rivelatori nelle zone piu’calde, dove il rate per unita’ di area e’ superiore a quanto finora provato da ALICE. July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 44 July 23rd, 2005 ~80 K+ HEPP πνν - EPS 2005 Fantechi Riccardo 45 Odoscopio veloce - Struttura 4×2 modules, each equipped with horizontal and vertical strips, respectively. 2.4 m With strips 20x1280 mm2 (20 = 19strip + 1 interstrip) the total number of channel is 60×4×2 = 480 ( ×2 …) The estimated material budget is ≈ 15% X0 July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 46 LKR Calorimeter • • • • • Must achieve inefficiency < 10-5 to detect photons above 1 GeV – Need to take data in 2006 to measure the inefficiency It is needed to identify electrons Advantages: – It exists – Homogeneous (not sampling) ionization calorimeter – Very good granularity (~2 2 cm2) – Fast read-out (Initial current, FWHM~70 ns) – Very good energy (~1%, time ~ 300ps and position (~1 mm) resolution Disadvantages – 0.5 X0 of passive material in front of active LKR – The cryogenic control system needs to be updated The readout electronics should be rebuilt July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 47 MAMUD • To provide pion/muon separation and beam sweeping. –Iron is subdivided in 150 2 cm thick plates (260 260 cm2 ) •Two coils magnetise the iron plates to provide a 0.9 T dipole field in the beam region •Active detector: – Strips of extruded polystyrene scintillator (1 x 4 x130 cm3) – Only half the slots instrumented – Light is collected by WLS fibres with 1.2 mm diameter Pole gap is 2 x 11 cm V x 30 cm H – Two planes of fast scintillator in the last part for a fast muon Coils cross section 10 cm x 20cm trigger July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 48 Trigger • Il rate di traccia singola passa da 1 MHz (NA48/2) a circa 20 MHz – 10 dai decadimenti del K e 7 dall’alone del fascio – Necessita’ di un trigger di livello 0 con una reiezione di ~20 e poi utilizzo di un trigger software in una batteria di PC – Massima flessibilita’ nello sviluppo e aggiornamento degli algoritmi • Con l’uso del segnale dell’ odoscopio, del mu e di depositi di energia in quadranti del calorimetro, si riesce ad ottenere la reiezione voluta – Semplificazione del trigger veloce – Si evitano il piu’possibile correlazioni tra rivelatori diversi – Facilita’ di imporre offline tagli piu’severi July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 49 Trigger • Limitare al massimo lo sviluppo di soluzioni ad hoc – Molto e’stato sviluppato per LHC (LHCB, Alice, etc) – Necessita’ di uniformare I moduli di readout di tutti I rivelatori – Utilizzo di hardware commerciale (PC, Switch Eth Gb, etc) • Quindi trigger di livello 0 semplice seguito da una farm di PC – Riduzione del rate in ingresso ai PC sotto il Mhz (come LHCB) – Trigger software sull’informazione completa – In totale 150000 canali • 100000 Gigatracker e 15000 dalle camere a ridottissima occupazione • 13500 canali del calorimetro compattati, con zero suppression fatta a software nei PC July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 50 Trigger July 23rd, 2005 HEPP - EPS 2005 Riccardo Fantechi 51