CALIXARENE-BASED NANOSYSTEMS FOR GENE DELIVERY Francesco Sansone, Laura Baldini, Alessandro Casnati, Gaetano Donofrio, Miroslav Dudič, Claudio Rivetti, Rocco Ungaro Dipartimento di Chimica Organica e Industriale Università di Parma Unità INSTM “Gene Therapy” Vector Vettore Delivery of nucleic acids to patients for therapeutic purposes Vector-DNA Complesso Vettore-DNA complex DNA Therapeutic terapeutico DNA Cellular membrane Membrana cellulare Gene Therapy can be used either to treat diseases caused by defective genes (e.g. Cystic Fibrosis) or to express other genes for therapeutic treatment (e.g. to express genes inside cancer cells to kill them) Endosoma Endosome Sintesi delle Protein proteine Synthesis Nucleo Nucleus DNA Delivery Systems for Gene Therapy Genes, unlike most drugs, are degraded when introduced into the body. To protect genes, we need to develop delivery systems (Vectors). VIRAL VECTORS SYNTHETIC NON-VIRAL VECTORS Possible infection risk (remove as many genes as possible) Immune reaction (memory from previous infections) Protect therapeutic genes well Show some specificity No hazard from native gene expression Less efficient gene transfer than viruses Lower tissue specificity Adenovirus / Adeno-associated Virus Retroviral Vectors Herpes Simplex Virus Lentiviral Vectors Liposomes Cationic Polymers Gemini Surfactants Glycocluster Nanoparticles “Gene Therapy” with non-viral, synthetic vectors Li and Huang Gene Therapy 2006 Felgner et al PNAS 1987 Behr et al PNAS 1989 Gao et al Biochim. Biophys. Res. Commun. 1991 Guanidinium-Calix[n]arenes + NH2 Cl H2N NH Cl + Cl H2N + Cl H2N NH H2N HN Cl + H2N NH2 Cl + NH2 NH2 HN HN Cl H2N + H N H2N OMe OMe MeO + NH2 N H OMe + Cl H2N H2N NH2 NH2 O O R R O O R R R = C3H7: 4G4Pr-cone R = C6H13: 4G4Hex-cone R = C8H17: 4G4Oct-cone CONE conformation Tetrahedron 2004, 60, 11621-11626 JACS 2006, 128, 14528-14536 Cl NH HN O HN NH2 + NH2 NH2 O O O n-3 Cl + NH 2 n = 4: 4G4Me-mobile n = 6: 6G6Me-mobile n = 8: 8G8Me-mobile Conformationally MOBILE NH Cl H2N + HN NH2 H2N 4G4Pr-alt Cl NH2 + 1,3-ALTERNATE Synthesis 1 t R Bu t t Bu Bu t Bu t Bu RI, base O O O H H HNO3 or NaNO3 OR OR RO OR t Bu 1 t R Bu H 1 t R 1a: R = hexyl; cone 1b: R = propyl; 1,3-alt 1c: R = methyl; mobile 2a: R1= NO2;R = hexyl; cone 2b: R1= NO2;R = propyl; 1,3-alt 2c: R1= NO2;R = methyl; mobile NH2NH2, Pd/C _ + NH2 H2N + H2N 3a: R1= NH2;R = hexyl; cone 3b: R1= NH2;R = propyl; 1,3-alt 3c: R1= NH2;R = methyl; mobile NBoc BocHN NH H2N H N 1 R O H Bu Cl OR OR RO OR Cl _ + NH2 OR OR RO OR NH N H _ NH Cl 2 BocHN HCl NBoc OR OR RO OR H N BocN N H NHBoc HN NH2 + NH2 Cl HN NHBoc _ 4G4-Hex-cone: R = hexyl; cone 4G4-Pr-alt: R = propyl; 1,3-alt 4G4-Me-mobile: R = methyl; mobile NBoc 4a: R = hexyl; cone 4b: R = propyl; 1,3-alt 4c: R = methyl; mobile HgCl2 or Mukayama's reagent BocNHC(S)NHBoc Water solubility compound e (dm 3 x mol -1 x cm -1) cmax (mol x dm -3) 4G4Pr-cone 3300 1x10-2 4G4Oct-cone - 10-4 6G6Me-mobile 4640 8x10-3 8G8Me-mobile 5120 4x10-3 Cell Transfection GenePORTER transfection 4G4Oct-cone reagent 4G4Oct-cone 4G4Oct-cone 4G4Oct-cone 5 mM 10 mM 20 mM 4G4Pr-cone 4G4Pr-cone 4G4Pr-cone 4G4Pr-cone DOPE 15 mM 15 mM + DOPE 15 mM 15 mM + DOPE 30 mM 15 mM + DOPE 7.5 mM 30 mM a 40 mM b without DOPE Calix[4] octyl Calix[4] hexyl cone Transfection Calix[4] propyl cone with DOPE No Transfection Calix[4] methyl mobile Calix[4] propyl 1,3-alt Calix[6] methyl mobile Calix[8] methyl Plasmid DNA and CONE Guanidinium-Calix[4]arenes Plasmid DNA 1 nM Plasmid DNA + 4G4Hex-cone (1mM) JACS 2006, 128, 14528-14536 Plasmid DNA + 4G4Pr-cone (1mM) Plasmid DNA + 4G4Oct-cone (1mM) Plasmid DNA and “OTHERS” Guanidinium-Calixarenes Plasmid DNA + 6G6Me-mobile (1mM) Plasmid DNA + 4G4Me-mobile (1mM) Plasmid DNA + 8G8Me-mobile (1mM) Plasmid DNA + 4G4Pr-alt (1mM) Effect of ETHANOL on CONE Guanidinium-Calix[4]arenes Plasmid DNA 1 nM + 5% EtOH Plasmid DNA + 4G4Hex-cone + 15% EtOH Plasmid DNA + 4G4Pr-cone + 5% EtOH Plasmid DNA + 4G4Oct-cone + 15% EtOH H2N H2N H2N + + NH NH2 HN H2N NH2 + HN HN NH2 O O O O R + + + NH2 =+ R R R R = C3H7: 4G4Pr-cone R = C6H13: 4G4Hex-cone R = C8H17: 4G4Oct-cone Transfection ! + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Effect of ETHANOL on 1,3-ALTERNATE and MOBILE Guanidinium-Calix[4]arenes Plasmid DNA + 4G4Pr-alt + 5% EtOH Plasmid DNA + 4G4Me-mobile + 5% EtOH + HN NH2 O = O + O NH NH2 + H2N + + O NH2 HN + + NH2 H2N Transfection ! 4G4Pr-alt + DOPE + + + + + + + + + + + + + + + + + + + + + + + H2N + NH + H2N Effect of ETHANOL on MOBILE Guanidinium-Calix[6]- and Calix[8]arenes Plasmid DNA + 6G6Me-mobile +5% EtOH Plasmid DNA + 8G8Me-mobile +5% EtOH NH2 + HN NH2 + = + No Transfection! n-1 NH + NH2 + + + + + + + + + + ++ + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + n = 2: 6G6Me-mobile n = 4: 8G8Me-mobile + + H2N + + H2N NH + NH2 + H2N + N H + OMe MeO OMe NH2 + NH2 + + OMe OMe MeO + + + H + NH2 N + H2N NH2 + HN Conclusions A new series of calixarene-based ligands was synthesised able to bind plasmid DNA Some of them give cell transfection thanks to their DNA condensation capability Condensation and transfection properties are strongly dependent on conformation, structure and size of the ligands relative fluorescence at 600 nm 0.21 1 + HN A at 260 nm NH2 H + NH2 N OMe OMe MeO 0.8 NH2 Linear Plasmid OMe MeO OMe NH2 H2N + N H 0.17 0.15 NH2 H2N NH2 + HN 0.19 DNA 0.23 8G8Me-mobile 1.2 4G4Pr-cone 6G6Me-mobile Interaction with plasmid DNA H2N H2N NH + NH2 3 NH + NH2 + Cl H2 N H2 N Cl NH HN O O 0.6 + 4G4Pr-cone linear plasmid 4G4Pr-alt 8G8Me-mobile ++ 4G4Pr-cone + NH2 NH2 4G4Pr-cone O O NH NH2 Cl H2 N + 0.13 0.11 0.4 + 4G4Pr-alt 8G8Me-mobile HN Cl H2 N 8G8Me-mobile NH2 + + HN 4G4Pr-alt NH2 NH2 H2N NH2 + HN + Cl H H2 N N + OMe OMe MeO 0.09 H2 N NH + NH2Cl NH 2 NH2 HN O + Cl H2N + Cl H2N 0.2 NH 0.07 H2N HN Cl + H2N NH2 NH 2 NHN2 H +N N 2 H H HN OMe MeO OMe Cl + NH2 NH2 H2N O O O O NH + NH2 NH2 O O O NH NH HN + Cl ClH2N NHNH 2 3 H2 N 2 H2 N NH2 + + + Cl H2N + Cl H2N NH 0.05 H2N Cl + NH2 HN -1 30 4 40 9 50 14 60 temp (°C) 19 70 24 80 29 90 O O O O 4G4Pr-cone calixarene concentration (microM) Melting curves Ethidium Bromide Displacement Assays Electrophoresis Mobility Shift Assay JACS Tetrahedron JACS2006, 2006,128, 2004, 128,14528-14536 14528-14536 60, 11621-11626 HN Cl + NH2 NH2 4G4Pr-cone 0 20 H2N NH2 HN 1H NMR spectra in D2O (300 MHz, 300 K) Cl + HN NH2 NH2 H2N NH2 + Cl HN Cl H + NH2 N OMe OMe MeO NH2 OMe MeO OMe NH2 H2N + N H Cl NH + Cl NH2 H2N H2N NH + Cl NH2 6G6Me-mobile 10.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 ppm (f1) -3.0 + NH2 Cl + Cl H2N + Cl H2N NH H2N HN H2N Cl + H2N NH2 Cl + NH2 NH2 HN HN Cl Cl NH2 O O NH H2N + H N H2N OMe OMe MeO OMe NH2 O O HN NH2 Cl + NH 2 4G4Pr-cone 4G4Me-mobile 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 N H + NH2 Dilution experiments by 1H NMR in D2O (300 MHz, 300 K) with 4G4Hex-cone 10.0 mM 5.0 mM 120 2.5 mM Hax OCH2 100 + Cl H2N NH H2N HN Cl + H2N NH2 Cl + NH2 NH2 HN HN NH2 O O O O 80 % of aggregate + Cl H2N 1.6 mM 60 40 1.0 mM cac cmc 20 4G4Hex-cone 0.5 mM 0 1e-5 0.2 mM 0.2 mM 1e-4 1e-3 [4G4Hex-cone] (M) 1e-2 1e-1 NMR DOSY experiments with 4G4Hex-cone in D2O (300 MHz, 300 K) LB510_3: dosy di DM148 1mM in D2O, T=298K LB510_5: dosy di DM148 0.2mM in D2O T=298K LogD LogD ppm ppm -10.2 -10.2 -10.2 -10.1 -10.1 -10.1 -10.0 -10.0 -10.0 -9.9 -9.9 -9.9 -9.8 -9.8 -9.8 -9.7 -9.7 -9.7 -9.6 -9.6 -9.6 -9.5 -9.5 -9.5 -9.4 -9.4 -9.4 -9.3 -9.3 -9.3 ppm LogD -9.2 -9.2 -9.2 8 7 6 5 4 3 2 1 ppm 8 7 6 5 4 3 2 1 ppm 8 7 6 5 4 3 2 1 ppm Hydrodynamic radius rH Hydrodynamic radius rH of monomer: of aggregate: 8.9 Å 32.7 Å Acknowledgments Miroslav Dudič Laura Baldini, Alessandro Casnati Rocco Ungaro Dept. of Organic and Industrial Chemistry Gaetano Donofrio Dept. of Animal Health Claudio Rivetti Dept. of Biochemistry and Molecular Biology