Piero Galeotti Università di Torino and INFN GianVittorio Pallottino Università di Roma and INFN Guido Pizzella Università di Roma Tor Vergata INFN- Frascati SN1987A revisited Results from LSD and KAMIOKANDE 2h56m 7h35m LSD Kamioka 0 Hours of 23 February 1987 Mont Blanc ~ 45 pulses/hour > 5 MeV Kamiokande ~ 85 pulses/hour > 7.5 MeV (7.5 MeV corresponds to Nhit=20) 8 Mont Blanc neutrino telescope 1987 Kamiokande neutrino telescope 1987 Hirata et al. PR D 448 (1988) May the Supernova Bang more than once ? A.DeRujula Phys.Lett. B19 3 :5 1 4 (1 9 87) V. S. Berezinsky, C. Castagnoli, V.I.Dokuchaev , P.Galeott i On the po ssibilit y of a two -bang supernova collapse N. Ciment o 1 1, 3, 2 8 7 (1 9 88) V. S.Imshennik Space Science Rev., 7 4, 3 2 5 (19 9 5) V. S.Imshennik and O.G.Ryashskaya Ast ronomy Letters, 30 ,1 4 -31 (2 0 04) New analysis Kamiokande neutrino telescope 1987 The data have been supplied to us by the Kamiokande collaboration in 1987. We have acknowledged the collaboration in several papers relative Kamiokande time IMB no IMB 11 in 12 s Nh>20 7 in 6 s Nh > 21 relative Kamiokande time IMB E>15 MeV no IMB E<15 MeV Correlation of the Kamiokande and LSD neutrino detectors with the Rome and Maryland gravitational wave detectors We have searched for possible correlations between the signals of the neutrino detectors and those of the g.w. detectors The algorithm C(f) = 1/N Si {ER(ti+f ) + EM(ti+f )} N number of pulses (in the neutrino detector) in a given period (say, one hour) ti time of a pulse f common time shift for a possible delay The background Cb(f1, f2) = 1/N S {ER(f1) + EM(f2)} N f1, f2 number of pulses (in the neutrino detector) in a given period (say, one hour) random time shifts for the background We perform N random extractions of f1, f2 for the background and count the number n of times when Cb(f1, f2) > C(f) N= one million random data for the background C(f1.1)=72.6 K Cb(f1, f2) with random f1, f2 Mont Blanc 1:45 - 3:45 ( 5-neutrinos at 2:56 U.T.) n C(-1.1) F +1.2 (second) What about Kamiokande ? (absolute time uncertainty ±1 min) fc is the time correction in s best fc=7.8 s Kamiokande has a time error ± 1 minute Kamiokande time correction + 7.8 s Schramm and Truran (1990) IMB K New analysis of the original data Periods of one hour moved in steps of 6 min n (N=105) hours of 23 February n (N=104) with time correction of 7.8 s CONCLUSIONS This new analysis reinforces the idea of a long duration activity of SN1987A in the neutrino emission. …noi non doviamo desiderare che la natura si accomodi a quello che parrebbe meglio disposto et ordinato a noi, ma conviene che noi accomodiamo l’intelleto nostro a quello che ella ha fatto, sicuri tale essere l’ottimo et non altro. Galileo in 1612 to THE END Federico Cesi.