Scuola Nazionale di tecnologie astromiche Napoli, 23-28 Settembre 2002 Sistemi Adattivi per l’astronomia: concetti ed esempi S. Esposito, Osservatorio Astrofisico di Arcetri, INAF Sommario Immagini da telescopi a terra e turbolenza atmosferica Concetti e parametri fondamentali dei sistemi ottici adattivi Astronomici I sistemi adattivi di: CFHT/Gemini VLT TNG Novità nel settore: Sistema adattivo di LBT La prossima tappa: Extremely Large Telescopes AO system layout Atmosfera turbolenta Keck Telescope Keck Telescope Immagini da telescopi a terra Measured Intensity I () O() P( )d I( ) Teoretical Point Spread function Obj. Intensity distribution O() P ( ) l/D 1.22 l/D La Modulation transfer function (MTF) ~ ~ ~ Optical Transfer function I (f ) O(f ) P (f ) ~ MTF= P(f ) W ( r d )W ( r ) dr La MTF teorica MTFs Overlap area f d/l D W = Funzione Pupilla 1 r < D/2 0 r > D/2 r0/l D/l Turbolenza I Strati turbolenti 6 dn 79 P / T 10 dT 2 ~20Km ~1mm/K/m telescopio Funzione di struttura della fase 2 53 D (r ) ( r2 ) ( r1 ) 6.88r r0 Media statistica delle differenze quadratiche di fase fra due punti Valori di r0 a 0.5 e 2.2 mm Acromaticità della perturbazione in mm r0 l 65 I polinomi di Zernike i/j 2 3 4 5 6 7 8 9 10 2 0.449 0 0 0 0 0 0.0142 0 0 3 0 0.449 0 0 0 0.0142 0 0 0 4 5 6 7 8 0 0 0 0 0.0142 0 0 0 0.0142 0 0.0232 0 0 0 0 0 0.0232 0 0 0 0 0 0.0232 0 0 0 0 0 0.00619 0 0 0 0 0 0.00619 0 0 0 0 0 0 0 0 0 0 Matrice di varianza-covarianza statistica 9 0 0 0 0 0 0 0 0.00619 0 10 0 0 0 0 0 0 0 0 0.00619 Turbolenza II MTF media in atmosfera Turbolenta MTFs W = Funzione Pupilla i (r ) r D/2 e 0 r D/2 Area di coerenza D = r0 r0/l D/l Effetto della correzione adattiva ! MTF ( f ) T0 ( f ) exp 0.5D (lf ) Questioni fondamentali Numero di gradi di libertà ? Natt ~ (D/r0)^2 Tempi caratteristici di funzionamento ? Nsamp ~ (D/r0)^2 Numero di punti di sampling del wf ? Massima sep. Oggetto scientifico stella di guida ? Angolo Isoplanatico Angolo di decorrelazione: Angolo isoplanatico ~ r0 / h r0 h Evoluzione temporale 0 ~ r0 / v l 2 5 10 m sec 2 25 sec v telescopio D >> D/V 1 Stelle di riferimento laser Tilt Indetermination Pos. reale Pos. apparente Focus Anisoplanatism r 1 h / H NGS LGS LGS Strato di sodio 10 km 90 km Strato turbolento d r Tel. pupil Tel. pupil h Loop di controllo Natt ~ (D/r0)^2 Control system C R [Natt x Nsens] S Nsens ~ 2 (D/r0)^2 Bibliografia •"Adaptive Optics for Astronomy”, Francois Roddier (ed.), Cambridge University Press, 1999 •"Adaptive Optics for Astronomical Telescopes", John W. Hardy, Oxford Books, 1998 •"Adaptive Optics for Astronomy", ed. Danielle M. Alloin & Jean-Marie Mariotti, Kluwer Academic Publishers, Dordrecht, 1994 •"Imaging Through Turbulence", Michael C. Roggemann & Byron Welsh, CRC Press, 1996 •"Principles of Adaptive Optics", Robert K. Tyson, Academic Press, 1997 •"Adaptive Optics for Atmospheric Compensation", James E. Pearson (ed.), SPIE Milestone Series, Volume MS 92 •“Introduction to Wavefront Sensors” (Tutorial Texts in Optical Engineering, Vol Tt18,) Joseph M. Geary, Society of Photo-optical Instrumentation Engineers, 1995 •Babcock, H. W. "Adaptive Optics Revisited." Science 249, 253-257, 1990. •Beckers, J. M. "Adaptive Optics for Astronomy: Principles, Performance, and Applications." Ann. Rev. Astron. Astrophys. 31, 13-62, 1993. •Hubin, N. and Noethe, L. "Active Optics, Adaptive Optics, and Laser Guide Stars." Science 262, 1390-1394, 1993. •Collins, G. P. "Making Stars to See Stars--DOD Adaptive Optics Work is Declassified." Physics Today 45, 17-21, Feb. 1992. Pueo & Hokupaa: Curvature AO Wavefront Sensor Deformable Mirror Sampling Rate Imager Curvature 36 elements, 2 arcsec WFS FOV, 12 arcsec guide star patrol radius 36 element Bimorph 60mm pupil DM stroke sufficient for ~ 0.9arcsec seeing 1 kHz University of Hawaii's QUIRC 1-2.5 micron HgCdTe 1k2 HAWAII array, 19.7 milliarcsec/pixel ~20 arcsec FOV Def mirrors: bimorph Geometria degli elettrodi Deformazione del bimorfo V proporzionale al laplaciano della sup. ottica No. Di attuatori 13-85 DM size 30-200 mm Geometria attuatori radiale Voltaggio 100 V Freq. Di risonanza 500 Hz Curvature sensor: concept I1 r I 2 (r ) f f l 2 w fr / l I1 r I 2 (r ) l Esiste un valore minimo per l ! I / I f2/l f l l d sub 2 Curvature sensor: optics Pupil image Oscillating membrane Pupil image 2l NAOS images NAOS images Thetis Differential tracking Composite image H-K 20.6 arcsec diameter resolution 70 mas or 410 km ~10 sec exposure time Naos@VLT VLT Adapter NAOS Cable Twist CONICA NAOS at Paranal Nov. 2001 Naos optical layout CONICA Input focus Deformable mirror Input parabola VLT Nasmyth focus Dichroic Tip-Til mirror Output parabola WFS input focus Naos def. Mirror: 185 attuatori Piezo-Stacked monolithic deformable mirrors V proporzionale allo spostamento della sup. ottica No. Di attuatori 30 – 349 Spaziatura attuatori 5-10 mm DM size 50-150 mm Geometria attuatori griglia quadrata Voltaggio 100 V Freq. di risonanza 500-1000 Hz Shack-Hartmann sensor: concept 2sub x S x w(r ) xdr subap I1 I 2 I 3 I 4 x sub S x sub I1 I 2 I 3 I 4 1 Asub Shack-Hartmann sensor: optics NAOS WFS characteristic Visible WFS Infrafred WFS Wavelenght range 0.45-1.0 mm 0.8-2.5 mm 14x14 FOV Mag. range 2.3 arcsec 0-13 5.15 arcsec 0-11 7x7 FOV Mag. range 4.6 arcsec 13-19 5.15 11-15 Deetector 128x128 EEV CCD50 1024x1024 Rockwell hawaii NAOS IR WFS TNG Primo anello di diffrazione Settembre 2001 NICS@K band, FWHM 0.15 Marzo 2002 NICS ,K band, 35% SR TNG optical layout Speckle Module Tip-Tilt module HO module PS, SHS F/32 dal telescopio Pyramid WFS: concept Immagini pupille I2 I1 Y I3 R mod I4 Sx(x,y) = ([I1(x,y)+I4(x,y)] - [I2(x,y)+I3(x,y)])/Itot y0 x0 Sy(x,y) = ([I1(x,y)+I2(x,y)] – [I3(x,y)+I4(x,y)])/Itot X w/x = R/F Sx Pyramid WFS: optics Un raffronto........ f l w S lmin l d sub f f l 2 2 l w / x Sx d sub PS CS SH w / x Open subSloop x w/x = R/F Sx w/x Ad oggi………………. • Curvature systems: modesto numero di gardi di libertà (dof) – Canada France Hawaii Telescope: 13 dof, 14th mag – Univ. of Hawaii: 19 dof, 12th mag – San Pedro Martir (Baja CA): 19 dof – Subaru: 19 dof – Hokupaa on Gemini Telescope: 36 dof, 13-17th mag – Hokupaa 85 (under construction): 85 dof • Shack-Hartmann systems: tendono ad avere più gradi di liberta ma richiedono stelle di rif. più brillanti. – Lick: 61 dof, 13.5 mag – Palomar: 241 dof – Keck: 250 dof, 13.5 mag – ADONIS: 50 dof (?), 13 mag – VLT (ESO) NAOS • Pyramid Sensor - TNG: 97dof, mag ? Scuola Nazionale di tecnologie astromiche Napoli, 23-28 Settembre 2002 Sistemi Adattivi per l’astronomia: concetti ed esempi II S. Esposito, Osservatorio Astrofisico di Arcetri, INAF Sommario Immagini da telescopi a terra e turbolenza atmosferica Concetti e parametri fondamentali dei sistemi ottici adattivi Astronomici I sistemi adattivi di: CFHT/Gemini VLT TNG Novità nel settore: Sistema adattivo di LBT La prossima tappa: Extremely Large Telescopes System Overview & Location LUCIFER window LGS LUCIFER NGS AGW System Key features Adaptive Secondary mirror: LBT672 [4839-85], A. Riccardi Improves AO channel transmission ~ 40% (WFS) Actuators pitch ~ 28cm ~ ro @ 0.75 mm, (0.8” seeing V Band) effective correction down to sensing wavelenght Pyramid wavefront Sensor (PS) Better performance WRT Shack-Hartmann > 1 mag Pupil sampling adjustable using on-chip binning, LBT 30x30,15x15,10x10... Moveable WFS Allows use of small refractive optics, 32mm Ø max. Reference star acquisition on a 3x2 arcmin FOV Small AOS opto-mechanics 320x400 mm (20 kg) Reduces costs, flexures, turbulence..... WFS Opto -Mechanical design Two WFS optical path: Pyramid sensor optical path: blue, 500mm, [0.6-0.9 mm] Tech./Acquisition camera: red F/15 LBT beam reflected on LUCIFER 15° window (1) Fixed telecentric lens, 80mm ø 2 arcmin FOV, (3x2 arcmin) (2) Refocusing triplet, 32mm ø 320mm (5) Fast steering mirror: ± 0.8” (PI) (6) Pupil Rotator (8) Refractive pyramid, 2.5” FOV ø (9) Camera triplet, 10mm ø (10) Pyramid sensor CCD (12) Technical/acquisition camera max FOV 30 arcsec Four on-board motorized parts (3),(4),(6),(9) ADC (4) 400mm Secondario adattivo: Concetto Secondario adattivo Secondario convenzionale •Minori superfici calde WFS TTM Coll. BS DM •K band: riduzione tempo esposizione di 2-2.6 volte •Attuatori elettromagnetici: ampio stroke (LBT>100mm) Sci. Camera Correttore di TT e Sci. Camera wind buffeting WFS Secondario adattivo per LBT Ogni AdSec: 672 attuatori 911mm diam. 2x8.4m specchi primari Da MMT336 a LBT672 LBT: Gregoriano 672 attuatori MMT: Cassegrain 336 attuatori 642mm 911mm Schema di LBT676 Esapodo Flangia di interfaccia e supporto strutturale 3 scatole di elettr. raffreddate Esapodo fisso Cold-plate e supporto per att. Leve astatiche Ref-plate di Zerodur (spessore 50mm) Shell deformabile di Zerodur (spessore 1.6mm) Attuatori e sensori capacitivi Armature sens. Capacit. (ref.plate) (MMT336) shell asferica 642mm diam. 2mm spessore Magneti (12mm diam.) Elettronica per LBT672 All’AO Fibra comunicazione diagnostica supervisor 400Mbit/s Gigabit Ethernet Switch Connessione in dasy chain Comunicaz. Real-time 2.9 Gbit/s Communication Board (1x backplane) Communication Board (1x backplane) Reference Signal Generator Board (1x backplane) Communication Board (1x backplane) Reference Signal Generator Board (1x backplane) Reference Signal Generator Board (1x backplane) DSP control Board (14x backplane) DSP control Board (14x backplane) DSP control Board (14x backplane) ± 48V, 35 A Alimentazione DSP control Board (14x backplane) DSP control Board (14x backplane) Potenza di calcolo totale: 60 Gmac/s (32bit fp) Ricostruttore real-time a bordo WFS: 30x30 => 34-47ms (z-m) Trasferimento slopes: 20ms Communication Board (1x backplane) Reference Signal Generator Board (1x backplane) DSP control Board (14x backplane) Communication Board (1x backplane) Communication Board (1x backplane) Reference Signal Generator Board (1x backplane) Reference Signal Generator Board (1x backplane) DSP control Board (14x backplane) DSP control Board (14x backplane) Liquid cooled crates, each comprehending 2 backplanes (3x) Distribution boards Actuators Coil Specchio sottile Gap Segnale di riferimento 3 scatole di elettronica raffreddate 2 crate per scatola 84 schede DSP custom 4 DSP/scheda - 8 attuatori/scheda 32-bit floating-point 180Mmac/s (MMT: 16-bit integer 40Mmac/s) Prestazioni r0=15cm@500nm Diametro N attuatori Fitting error Efficienza att. Potenza nell’att. Potenza nei crate Comun. Real-time Comun. Diagnost. DSP MMT 641 mm 336 72 nm 0.5 N/W1/2 0.41 W/act 4.7 W/act 160 Mbit/s No dedicated 40 Mmac/s (int) LBT 911 mm 672 64 nm 0.5 N/W1/2 0.19 W/act 3.8 W/act 2.9 Gbit/s 400 Mbit/s 160 Mmac/s System performance simulations I Parameter Simulation values Atmospheric parameters Two layers with wind velocity 15 m/s Fried parameter 15cm @500nm => 0.67 arcsec Turbulence outer scale 40m Guide Star Spectral type K5, V-magnitude in range 9.85—17.5 LBT Telescope Diameter 8.25m Obstruction ratio 0.11 Pyramid WFS WF sampling: 10x10, 15x15, 30x30 (obtained using on chip binning) Exposure time: in range 1 – 10ms RON from 3.5 to 8.4 e- according to frame rate (SciMeasure camera specs) Tilt mod.: ±1 ±2 (30x30sub), ±3 (15x15sub), ±4,±5,±6 (10x10sub) l/D System Transmission 0.9^3 * 0.7 * CCD QE = 0.4, (CCD average QE = 0.8 @ [600—900 nm]) Wavefront reconstructor: LBT672 mirror modes Time filtering 36, 44, 55 and 66 modes @ 10x10 conf. 78, 105 and 136 modes @ 15x15 conf. 231, 351 and 496 modes @ 30x30 conf Pure integrator with gain = 0.5 Sistem performance simulations II 15x15 30x30 Max SRs: 87,93,96 10x10 SR 0.2, mR = 14.3, 15.5, 16.7 On-Axis SR 20 % Max off-axis 30 arcsec Sky Coverage (b=20,l=180) J band H band K band Pyramid (PS) 11 33 83 Shack-Hartmann 6 18 47 SR 0.2, mR = 15.5 (SH), 16.7(PS) Current situation & schedule SciMeasure Analytical Systems, Inc. DR RS232 4X HIGH SPEED COMMUNICATION MODULES ETHERNET COMMUNICATION TIMING REFERENCE RX TIMING REFERENCE TX CCD60 FASTI controller design and test LLLCCD WFS HO Final controller test BI L3CCD Test tower AO system parts acquisition: Oct/Nov 2002 ETHERNET CONTROLLER . Co mm AO system HW cost: 600K USD (two units) Manpower: 10 person / year (two years) People involved: ~ 8-10 people is s Shipping Installation 2001 2002 2003 2004 J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J act design LBT672 Adaptive Secondary procurement P36' test P45 test Closed loop inst&test CL WFS Design phase assemb. P45+WFS+RTR Tower +LBT672 Wavefront sensor MMTtest OptoMecc Procur. and test inst. RT software System Software Debugging Diagnostic Design phase 1 Design phase 2 Coding phase 1 Coding phase 2 SERDES P45+PWFS+RTR lab test: 4Q 2002 -1Q 2003 BOTTOM HEAT SINK BACKPLANE SLOT CONNECTORS LBT672+PWFS tower test: 4Q 2003 -1Q 2004 ELT’s Tecnologia dei secondari adattivi per ELTs ELT’s Euro 50 Optical diagram for MCAO Turb. Layers #1 Atmosphere UP #2 Telescope WFS DM1 DM2