Algoritmi e Strutture Dati
Capitolo 11
Visite di grafi
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Scopo e tipi di visita
• Una visita (o attraversamento) di un grafo G
permette di esaminare i nodi e gli archi di G in
modo sistematico (supporremo G connesso)
• Problema di base in molte applicazioni
• Esistono vari tipi di visite con diverse
proprietà: in particolare, visita in ampiezza
(BFS=breadth first search) e visita in
profondità (DFS=depth first search)
2
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Algoritmo di visita generica
• La visita parte da un vertice s prescelto ed esplora
seguendo una qualche regola uno dei suoi adiacenti
• Un vertice v raggiunto da u viene marcato come
visitato se è stato incontrato per la prima volta, e
viene quindi aggiunto alla frangia F di visita;
inoltre, il nodo u diventa padre di v, e l’arco (u,v)
viene etichettato come arco di visita
• Un vertice rimane nella frangia di visita fintantoché
non sono stati esplorati tutti i suoi adiacenti
• La visita genera un albero di copertura T del grafo
\
3
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Visite particolari
• Se la frangia F è implementata come coda si ha
la visita in ampiezza (BFS)
• Se la frangia F è implementata come pila si ha
la visita in profondità (DFS)
4
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Visita in ampiezza
5
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Visita in ampiezza
6
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Costo della visita in ampiezza
Il tempo di esecuzione dipende dalla struttura
dati usata per rappresentare il grafo (e dalla
connettività o meno del grafo rispetto ad s):
• Liste di adiacenza: O(m+n)
• Matrice di adiacenza: O(n2)
7
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo non orientato (1/2)
8
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo non orientato (2/2)
9
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo orientato
10
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Proprietà
• Per ogni nodo v, il livello di v nell’albero BFS
è pari alla distanza di v dalla sorgente s
• Per ogni arco (u,v) di un grafo non orientato,
gli estremi u e v appartengono allo stesso
livello o a livelli consecutivi dell’albero BFS
• Se il grafo è orientato, possono esistere archi
(u,v) che attraversano all’indietro più di un
livello
11
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Visita in profondità
12
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Visita in profondità
13
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Costo della visita in profondità
Il tempo di esecuzione dipende dalla struttura
dati usata per rappresentare il grafo (e dalla
connettività o meno del grafo rispetto ad s):
• Liste di adiacenza: O(m+n)
• Matrice di adiacenza: O(n2)
14
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo non orientato (1/2)
15
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo non orientato (2/2)
16
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo orientato (1/2)
17
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Esempio: grafo orientato (2/2)
18
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Proprietà
• Sia (u,v) un arco di un grafo non orientato. Allora:
– (u,v) è un arco dell’albero DFS, oppure
– i nodi u e v sono l’uno discendente/antenato dell’altro
• Sia (u,v) un arco di un grafo orientato. Allora:
– (u,v) è un arco dell’albero DFS, oppure
– i nodi u e v sono l’uno discendente/antenato dell’altro,
oppure
– (u,v) è un arco trasversale a sinistra, ovvero il vertice
v è in un sottoalbero visitato precedentemente ad u
19
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Riepilogo
• Concetto di grafo e terminologia
• Diverse strutture dati per rappresentare grafi nella
memoria di un calcolatore
• L’utilizzo di una particolare rappresentazione può
avere un impatto notevole sui tempi di esecuzione
di un algoritmo su grafi (ad esempio, nella visita
di un grafo)
• Algoritmo di visita generica e due casi particolari:
visita in ampiezza e visita in profondità
20
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
21
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Copyright © 2004 - The McGraw - Hill Companies, srl
Algoritmi e strutture dati
22
Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano
Copyright © 2004 - The McGraw - Hill Companies, srl
Scarica

Clicca qui.