Experimental study of the effects of vent geometry on the dispersion of a buoyant gas in a small enclosure B.CARITEAU, I. TKATSCHENKO CEA Saclay, DEN, DM2S, SMFE, LEEF ICHS 4, San Francisco, California, USA, September 2011 Dispersion in an enclosure : Natural ventilation through one vent V X(z)? U0, Dr0 ICHS 4, San Francisco, California, USA, September 2011 Dispersion in an enclosure : Natural ventilation through one vent V X(z)? U0, Dr0 A wide range of injection velocity ICHS 4, San Francisco, California, USA, September 2011 Dispersion in an enclosure : Natural ventilation through one vent V X(z)? U0, Dr0 Vent effects ICHS 4, San Francisco, California, USA, September 2011 Previous results on dispersion regimes without ventilation r r0 V Volume Richardson number: Ri v g a r 0 U 02 Cleaver et. al. (1994, J. Hazardous Mater. Vol. 36) 1 ICHS 4, San Francisco, California, USA, September 2011 3 Previous results on dispersion regimes without ventilation r r0 V Volume Richardson number: Ri v g a r 0 U 02 Cleaver et. al. (1994, J. Hazardous Mater. Vol. 36) 1 Buoyancy dominated dispersion Stratified Momentum dominated dispersion Riv 1 d H Homogeneous layer H Rivc 25R0 3 2 ICHS 4, San Francisco, California, USA, September 2011 RiVc Fully homogeneous A simple analytical model for dispersion with 1 vent Linden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212) ICHS 4, San Francisco, California, USA, September 2011 A simple analytical model for dispersion with 1 vent Linden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212) Hypotheses for the analytical model: P and T Constant Homogeneous distribution Pure gravity driven flow through the vent Boussinesq approximation ICHS 4, San Francisco, California, USA, September 2011 A simple analytical model for dispersion with 1 vent Linden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212) Hypotheses for the analytical model: P and T Constant Homogeneous distribution Pure gravity driven flow through the vent Boussinesq approximation Volume flow rate through the vent Qe C D S ( Xg 0 h)1 / 2 CD=0.25 discharge coefficient S h g 0 g ICHS 4, San Francisco, California, USA, September 2011 r a r0 ra A simple analytical model for dispersion with 1 vent Linden, Lane-Serff & Smeed (1990, J. Fluid Mech. Vol. 212) Hypotheses for the analytical model: P and T Constant Homogeneous distribution Pure gravity driven flow through the vent Boussinesq approximation Volume flow rate through the vent Qe C D S ( Xg 0 h)1 / 2 CD=0.25 discharge coefficient S Steady state volume fraction in the enclosure Q0 X 1/ 2 C D S ( g 0 h) 2/3 ICHS 4, San Francisco, California, USA, September 2011 h g 0 g r a r0 ra Goals of the present experiments: Influence of Riv and vent geometry on the vertical distribution Compare results to the analytical model Check the validity of the criterion for homogeneous filling ICHS 4, San Francisco, California, USA, September 2011 11 Experimental set-up Steady state vertical distribution Volume fraction variations with the flow rate ICHS 4, San Francisco, California, USA, September 2011 12 Experimental set-up Steady state vertical distribution Volume fraction variations with the flow rate ICHS 4, San Francisco, California, USA, September 2011 13 Experimental setup and injection conditions (b) (c) 20mm (c) 35x900 mm2 (a) 180mm (b) 180x180 mm2 180mm Vents: 180mm 900mm 35mm (a) 180x900 mm2 Vent 1260mm 930mm V=1.1m3 930mm Injection tube ICHS 4, San Francisco, California, USA, September 2011 Experimental setup and injection conditions Working gases : Helium/Air Riv=8 10-4 to 75 D0=20mm Riv=0.2 to 740 20mm Sources : X0=100% helium Q0=1 to 300Nl/min 180mm D0=5mm or 20mm D0=5mm Vent 1260mm 930mm V=1.1m3 930mm Injection tube ICHS 4, San Francisco, California, USA, September 2011 Helium volume fraction measurement : min-katharometers 7mm M1 M2 M4 1160mm katharometers 1060mm Vent 940mm 700mm 580mm M4 625mm 135mm 930mm 240mm 1260mm 820mm 460mm M1 340mm 230mm M2 220mm 255mm 195mm 930mm 100mm Injection tube ICHS 4, San Francisco, California, USA, September 2011 16 Experimental set-up Steady state vertical distribution Volume fraction variations with the flow rate ICHS 4, San Francisco, California, USA, September 2011 17 Steady state: vertical profiles 180x900 mm2 vent (a) 20mm source : toward buoyancy dominated flow 1,0 0,8 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 180Nl/min 300Nl/min 0,4 0,2 0,0 0,0 0,5 1,0 1,5 2,0 2,5 X/<X> ICHS 4, San Francisco, California, USA, September 2011 3,0 3,5 Riv 1 0.2 Steady state: vertical profiles 180x900 mm2 vent (a) 20mm source : toward buoyancy dominated flow 1,0 0,8 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 180Nl/min 300Nl/min 0,4 0,2 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Riv 1 0.2 3,5 X/<X> Strong vertical variations ICHS 4, San Francisco, California, USA, September 2011 Steady state: vertical profiles 180x900 mm2 vent (a) 20mm source : toward buoyancy dominated flow 1,0 0,8 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 180Nl/min 300Nl/min 0,4 0,2 0,0 0,0 0,5 1,0 1,5 2,0 2,5 X/<X> Auto-similar ICHS 4, San Francisco, California, USA, September 2011 3,0 3,5 Riv 1 0.2 Steady state: vertical profiles 180x900 mm2 vent (a) 5mm source : toward momentum dominated flow 1,0 0,8 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min z /H 0,6 0,4 0,2 Riv 1 0.05 0.0023 0,0 0,0 0,5 1,0 1,5 2,0 2,5 X/<X> ICHS 4, San Francisco, California, USA, September 2011 3,0 3,5 Steady state: vertical profiles 180x900 mm2 vent (a) 5mm source : toward momentum dominated flow 1,0 0,8 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min z /H 0,6 0,4 0,2 Riv 1 0.05 0.0023 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 X/<X> Top homogeneous layer ICHS 4, San Francisco, California, USA, September 2011 Steady state: vertical profiles 180x900 mm2 vent (a) 5mm source : toward momentum dominated flow 1,0 0,8 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min z /H 0,6 0,4 0,2 Riv 1 0.05 0.0023 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 X/<X> Homogeneous for Riv<0.0023 ICHS 4, San Francisco, California, USA, September 2011 Steady state: vertical profiles 180x180 mm2 vent (b) 20mm source : toward buoyancy dominated flow 1,0 0,8 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 180Nl/min 300Nl/min 0,4 0,2 0,0 0,8 0,9 1,0 1,1 1,2 X/<X> ICHS 4, San Francisco, California, USA, September 2011 1,3 1,4 Riv 1 0.2 Steady state: vertical profiles 180x180 mm2 vent (b) 5mm source : toward momentum dominated flow 1,0 0,8 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min 0,4 0,2 0,0 0,8 0,9 1,0 1,1 1,2 X/<X> ICHS 4, San Francisco, California, USA, September 2011 1,3 1,4 Riv 1 0.05 0.0023 Steady state: vertical profiles 180x180 mm2 vent (b) 5mm source : toward momentum dominated flow 1,0 0,8 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min 0,4 0,2 0,0 0,8 0,9 1,0 1,1 1,2 X/<X> 1,3 Riv 1 0.05 0.0023 1,4 Homogeneous for Riv<0.0023 ICHS 4, San Francisco, California, USA, September 2011 Steady state: vertical profiles 35x900 mm2 vent (c) 20mm source : toward buoyancy dominated flow 1,0 0,8 Riv z /H 0,6 5Nl/min 10Nl/min 20Nl/min 40Nl/min 60Nl/min 100Nl/min 1 180Nl/min 300Nl/min 0.2 0,4 0,2 0,0 0,4 0,6 0,8 1,0 X/<X> ICHS 4, San Francisco, California, USA, September 2011 1,2 1,4 Steady state: vertical profiles 35x900 mm2 vent (c) 5mm source : toward momentum dominated flow 1,0 0,8 Riv 1 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 0.05 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min 0.0023 0,4 0,2 0,0 0,7 0,8 0,9 1,0 1,1 X/<X> 1,2 ICHS 4, San Francisco, California, USA, September 2011 1,3 1,4 Steady state: vertical profiles 35x900 mm2 vent (c) 5mm source : toward momentum dominated flow 1,0 0,8 Riv 1 0,6 z /H 5Nl/min 10Nl/min 20Nl/min 0.05 40Nl/min 60Nl/min 100Nl/min 140Nl/min 180Nl/min 0.0023 0,4 0,2 0,0 0,7 0,8 0,9 1,0 1,1 X/<X> 1,2 1,3 1,4 Homogeneous for Riv<0.0023 ICHS 4, San Francisco, California, USA, September 2011 Experimental set-up Steady state vertical distribution Volume fraction variations with the flow rate ICHS 4, San Francisco, California, USA, September 2011 30 Volume fraction variations with the flow rate Average volume fraction 100,0 <X> (%) 10,0 Vent 180x900 mm2 (a) Vent 180x180 mm2 (b) Vent 35x900 mm2 (c) Filed symbols: 20mm source Model with CD=0.25 1,0 0,1 1,E-05 1,E-04 1,E-03 Q (m 3/s) ICHS 4, San Francisco, California, USA, September 2011 1,E-02 Volume fraction variations with the flow rate Average volume fraction 100,0 <X> (%) 10,0 Vent 180x900 mm2 (a) Vent 180x180 mm2 (b) Vent 35x900 mm2 (c) Filed symbols: 20mm source Model with CD=0.25 1,0 0,1 1,E-05 1,E-04 1,E-03 Q (m 3/s) ICHS 4, San Francisco, California, USA, September 2011 1,E-02 Volume fraction variations with the flow rate Average volume fraction 100,0 <X> (%) 10,0 Vent 180x900 mm2 (a) Vent 180x180 mm2 (b) Vent 35x900 mm2 (c) Filed symbols: 20mm source Model with CD=0.25 1,0 0,1 1,E-05 1,E-04 1,E-03 Q 1,E-02 (m 3/s) The model over estimate the experimental results In particular for vent (a) ICHS 4, San Francisco, California, USA, September 2011 Volume fraction variations with the flow rate Average volume fraction 100,0 <X> (%) 10,0 Vent 180x900 mm2 (a) Vent 180x180 mm2 (b) Vent 35x900 mm2 (c) Filed symbols: 20mm source Model with CD=0.25 1,0 0,1 1,E-05 1,E-04 1,E-03 Q 1,E-02 (m 3/s) The power law is no longer valid for SOME data ICHS 4, San Francisco, California, USA, September 2011 Volume fraction variations with the flow rate Average volume fraction 100,0 <X> (%) 10,0 Vent 180x900 mm2 (a) Vent 180x180 mm2 (b) Vent 35x900 mm2 (c) Filed symbols: 20mm source Model with CD=0.25 1,0 0,1 1,E-05 1,E-04 1,E-03 Q (m 3/s) ICHS 4, San Francisco, California, USA, September 2011 1,E-02 Volume fraction variations with the flow rate Maximum volume fraction 100,0 Xmax (%) 10,0 Vent 180x900 mm2 (a) Vent 180x180 mm2 (b) Vent 35x900 mm2 (c) Filed symbols: 20mm source Model with CD=0.25 1,0 0,1 1,E-05 1,E-04 Q (m 3/s) 1,E-03 ICHS 4, San Francisco, California, USA, September 2011 1,E-02 Volume fraction variations with the flow rate Maximum volume fraction vs normalized flow rate 0,7 Source flow rate normalized by the expected outflow rate : 0,6 Xmax Model X=Q/Qe<1 0,5 Qe CD S ( X maxg0 h)1/ 2 i.e. only gravity driven outflow 0,4 0,3 0,2 0,1 0,0 0,0 0,5 1,0 Q/Qe 1,5 2,0 Event 180x900 mm2 (a) Event 180x180 mm2 (b) Event 35x900 mm2 (c) Filed symbols: 20mm source ICHS 4, San Francisco, California, USA, September 2011 Volume fraction variations with the flow rate Maximum volume fraction vs normalized flow rate 100,0 0,7 Xmax (%) 10,0 0,6 1,0 Xmax 0,5 0,4 0,1 1,E-05 0,3 0,2 0,1 0,0 0,0 0.3 0,5 1,0 Q/Qe 1,5 2,0 Event 180x900 mm2 (a) Event 180x180 mm2 (b) Event 35x900 mm2 (c) Filed symbols: 20mm source ICHS 4, San Francisco, California, USA, September 2011 1,E-04 Q (m 3/s) 1,E-03 1,E-02 Volume fraction variations with the flow rate Maximum volume fraction vs normalized flow rate 100,0 0,7 Xmax (%) 10,0 0,6 1,0 Xmax 0,5 0,4 0,1 1,E-05 0,3 0,2 0,1 0,0 0,0 0.3 0,5 1,0 Q/Qe 1,5 2,0 Event 180x900 mm2 (a) Event 180x180 mm2 (b) Event 35x900 mm2 (c) Filed symbols: 20mm source ICHS 4, San Francisco, California, USA, September 2011 1,E-04 Q (m 3/s) 1,E-03 1,E-02 Volume fraction variations with the flow rate Maximum volume fraction vs normalized flow rate 100,0 0,7 Xmax (%) 10,0 0,6 1,0 Xmax 0,5 0,4 0,1 1,E-05 0,3 0,2 1,E-04 Q (m 3/s) 1,E-03 1,E-02 Purely gravity driven flow through the vent 0,1 0,0 0,0 0.3 0,5 1,0 Q/Qe 1,5 2,0 Event 180x900 mm2 (a) Event 180x180 mm2 (b) Event 35x900 mm2 (c) Filed symbols: 20mm source ICHS 4, San Francisco, California, USA, September 2011 Volume fraction variations with the flow rate Maximum volume fraction vs normalized flow rate 100,0 0,7 Xmax (%) 10,0 0,6 1,0 Xmax 0,5 0,4 0,1 1,E-05 0,3 0,2 1,E-04 Q (m 3/s) 1,E-03 1,E-02 Additional pressure effects 0,1 0,0 0,0 0.3 0,5 1,0 Q/Qe 1,5 2,0 Event 180x900 mm2 (a) Event 180x180 mm2 (b) Event 35x900 mm2 (c) Filed symbols: 20mm source ICHS 4, San Francisco, California, USA, September 2011 Conclusions Strong vertical stratification Highly dependent on the vent geometry Source momentum effects : homogeneous layer Criterion for complete homogeneity still valid Homogeneous model gives fairly good results Pressure effects are significant when Q/Qe>0.3 ICHS 4, San Francisco, California, USA, September 2011