Metabolics: feeding the monster •Energetics •Accretion disks •Emitted spectrum •Relativistic discs QuickTime™ e un decompressore Codec YUV420 sono necessari per visualizzare quest'immagine. Fueling AGNs Conversion of mass to energy with some efficiency L Mc 2 M L 3 L44 1 1.8 10 M yr c 2 1 GMm dU 1 GM dm GM M 1 GM 1 L = 0.083 if 2 2 r dt 2 r dt r 2 rc 12 GM RS 2 2 3 1013 M 8cm last stable orbit = 3RS c and ignoring relativistic effects. 1 GM U energy available from a particle falling to 3R S 2 3RS 1 0.057 for a Schwarzschild metric and 0.42 for a Kerr metric (l.s.o. = RS ) 2 L M E = E2 Critical mass accretion rate 2.2M 8 M yr 1 c U The major problem for fueling an AGN is not the energy requirement but angular momentum considerations. Consider the angular momentum of a particle in the solar circle around the Galactic centre: L GMr angular momentum per unit mass m r 10kpc M 1011 M move this particle to 0.01pc around a 10 7 M BH L must decrease by 10 m 5 times Accretion: Basic concepts Tidal disruption of a star A star of mass density near a BH of radius R can approach no closer than the Roche limit without being tidally disrupted : BH rR 2.4 R * 1/ 3 rR RS 1/ 2 6 rR 3M c 1/ 2 8 2.4 1 M 0.64 5 10 M * 3 3 RS 4RS * G * Accretion disk structure • Rotating mass of gas in a cylindrical potential well • Time-scale for processes to redistribute angular momentum >> dynamical time-scales or radiative timescales each gas element looses energy via collision and radiative cooling but retains its angular momentum. • Circular orbits v circular velocity d is the gravitational potential dR a fluid rotates differentially, the rate of shearing A is : v R v R 2 d 0 dR gas elements at different radii rotate with different angular velocity AR Viscosity present among gas anuli rotating with different tends to reduce the difference in velocity, dumping out the shearing motion, and therefore tends to dissipate energy as heat and radiation. Thus viscosity converts gravitational potential energy into radiation in an efficient manner. Equation of motion of the gas. Disk has surface density (R,t) and radial velocity vR(R,t). Consider motion of an annulus of gas with inner radius R and extent R Mass is: M = 2R R Angular momentum is L= MR2 = 2R R R2 Equation of continuity The variation of the mass of the annulus with the time must be equal to the difference between the mass entering the radius R and the mass going out. M (2R R ) v R (R,t) 2R (R,t) v R (R R,t) 2 (R R) (R R,t) t t taking the limit for small R (Rv R ) 0 t R R this becomes : Conservation of angular momentum L MR 2 2R R R 2 L Lin Lout 2R v R R 2 2 (R R) v R (R R) (R R) (R R) 2 t R (R 2) (Rv R R 2) t R If viscosity is introduced among contiguous gas annuli the rate of change of L will depend also in the viscous force: 1 G (R 2) (Rv R R 2) t R 2 R where G(R,t) A 2R R A is the viscous force per unit length around the circonference and is the kinematic viscosity G is the viscous torque of an outer annulus acting on a neighboring inner one R R (Rv R ) 0 A=R t R R 1 G 2 2 R (R ) (Rv R R ) t R 2 R 1 1 (R /R) 2 3 (R ) (v R R ) t R R 2R R 3 1 ( R ( /R) 2 (R ) /R R 1 t R R If the potential is due to a central point mass M GM R3 1/ 2 (R1/ 2 ) R R 3 t R R then : If the rate of change of L would not depend on G then the disk surface density time derivative would be zero and = ( R). Conversely, is a compicate function of R and t. In general = (R,t, ). If = const. the previous eq. can be integrated analitically. If we assume an initial configuration with all mass confined at R0 at t0 (t0)=(R- R0), then while time passes broadens until all the mass is distributed toward the centre and all the angular momentum is flown toward the outer disk. Dissipative processes act to smooth the differences and bring the mass toward the inner disk. Energy dissipation in the disk The time variation of the total kinetic + potential energy : 1 2 GMm mv where m = 2R R t 2 R 2 R 2 GM = 2R R = A1 t R 2 must be balanced by the differences between the rate of flow of the energy in and out of the ring 2 R 2 GM 2Rv R R A2 R 2 R and also by the difference bewteen the work done by viscous stresses at the side of the ring and the energy losses into heat due to friction and differential rotation : 2W R R 2 R 2W R R 2 = A3 where 2W R R 2 is the viscous torque(stress) R R 2W R R 2 G 2R 2A W R A R R R A1 A2 A3 0 Energy dissipation in the disk The energy dissipated into heat per unit area is : 1 Q W R R (1/2 because the disk has 2 sides) 2 R 2 R 2 GM 2 R 2 GM 2 2RQ R W R v R R R t 2 R R R R 2 (v R ) R 3 2 3 2 2 R 3 (v R ) 2 2 W R GM R v 2 t R t R 2 t 2 R R R 1 3 2 Q W R Rv R 2 R 2R R 4 now, remember that M 2R R 1 M2 2 Q W R R 2R R 8 M 2R v R : so, 1 M2 2 Q W R R 2R R 8 During radial motion half of the liberated potential energy goes into increasing the kinetic energy and half goes into heat. Viscous stresses transfer mechanical energy besides momentum. Hydrostatic equilibrium along z-direction If the motion in the disk in the z-direction is subsonic, then the disk is in hydrostatic equilibrium. Gas and radiation pressure gradient is balanced by the z component of the grav. attraction. Assuming that the disk is homogeneus (=const along z). GM p 3 z 2 z R z z 2 p(z) = pc 1 H 1 pc 2 H 2 is the central pressure of the disk 2 1 1 2 2 2 p H H = average pressure ( ) H 3 3 p H average sound speed us 3 Viscosity 2W R R 2 is the viscous torque(stress) 2W R R 2 G 2R 2A W R A R is the kinematic viscosity, lt ut where ut is the turbulent velocity and lt H ut us (sound speed = Kepler law : GM R3 R pH p = ) viscous force per unit length R lt is turbulent mixing length 2 R 3 2 2 2 2 W R Hu s 2H 2 pH 3 3 3 3 3 Hus with < 1 Steady disks 0 continuity equation becomes : t 1 M 0 M const = -2Rv R t 2R R does not depend on radius! momentum equation becomes : M R 3v R W R R 2 0 R 2 W R R 2 R R 2 M W R R 2 W R R 2 R M 2 R c 2 valid for R > 3R S . In this region R , , L R < 3R S matter falls in the BH and v R increases exponentially. R M R At R 3R S viscous stresses must stop having big effects WR 0 1/ 2 1/ 2 GM GM 1/ 2 c M 0 R02 M 3 R02 M GM R1/0 2 M 3 R1/0 2 R 3 / 2 R R0 M R1/0 2 R 3 / 2 therefore : M 2 M 2 W R R R c R M R1/0 2 R 3 / 2 2 2 1/ 2 M R0 W R 1 2 R 2 1/ 2 2 1 M 3M R 0 Q W R R 2 1 2R R 8 8 R 2 Energy does not depend on viscosity! It is only the gravitational potential that pays. 1/ 2 R 1/ 2 R0 2 2 0 L 4 Q RdR 3 M 1 RdR 3 M GM 1 R dR R R R0 R 0 R 0 M GM accretion rate times the binding energy of the last stable orbit! R0 independent on dissipative forces The heat loss per unit area is given by the transfer equation : Q acTc4 / a = Stefan© s constant, Hk( ,Tc ) if the disk is optically thick, each element radiates as a BB with T Q T 4 S where is the Stefan - Bolzman constant. putting Q Q 1/ 4 1/ 2 R0 3GM M Ts 1 8R 3 R At each radius the spectrum is a BB with T S R out R0 B (TS (R))2RdR Tmax occurres at R = R out R0 49 R0 Tmax 36 S so the total spectrum is : 3 2RdR exp( h /kTS ) 1 1/ 4 3GM M 0.488 8R 3 X-ray spectrum • • Dissipate energy in optically thick disk – cool, no hard X-rays MUST dissipate in optically thin material so that E >> kT (Compton) Optically thin accretion flow – low L/LEdd only! Magnetic reconnection above disk – no known alternatives at high L/LEdd! Inverse Compton scattering of lower energy photons by energetic electrons in a corona surrounding the disk Thomson diffusion A monochromatic wave interacts with an e-. The e- will be accelerated and will emit radiation. The direction of the emitted radiation will be in general different from the direction of the incident radiation. If the particle is not relativistic the frequency of the emitted radiation will be the same of the incident radiation. e2 2 Ý v Larmour formula for the power irradiated in a polarization status 4c 3 e2 2 Ý v sin 2 where is the angle between the emitted radiation ad the acceleration 3 4c e F eE e0 E 0 sin( 0 t) me vÝ vÝ 0 E 0 sin( 0 t) me dP d dP d dP e 4 E 02 sin 2 2 3 d 8me c e 4 E 02 e 4 E 02 2 P d sin 8me2c 3 3me2c 3 Scattering cross section d irradiated energy per unit time and solid angle d incident energy flux per unit time and area incident energy per unit area and time = time average of pointing flux d dP 1 c c 2 S EE S E0 d d S 4 8 d e 4 E 02 8 e2 2 2 2 sin r sin r e classic radius e e 2 3 2 2 d 8m e c cE 0 me c 2 2 8 2 T 0 re sin 3 d re 6.65 1025 cm 2 3 e 4 E 02 P T cU rad U rad S /c = energy density of the incident radiation 2 3 3m c This is formula is valid only if the momentum of the incident photon is negligible h /c m e c h m e c 2 m e c 2 511keV : Compton effect E1 h1 p1 quantum mechanical particle approach h1 h c 1 E 2 h 2 p2 pe h 2 h c 2 1 2 E 2 me c 4 mec 2 initial e - energy c E = final e - energy Momentum conservation : p1 p2 pe pe2 p12 p22 2 p1 p2 p12 p22 2 p1 p2 cos Energy conservation : E 0 me c 2, E E 02 pe2c 2 p1c me c 2 p2c E 02 pe2c 2 c( p1 p2 ) me c 2 E 02 pe2c 2 squaring : c 2 ( p1 p2 ) 2 2cE 0 ( p1 p2 ) pe2c 2 pe2 p12 p22 2 p1 p2 2E 0 ( p1 p2 ) /c p1 p2 E 0 ( p1 p2 ) /c p1 p2 cos p1 p2 (1 cos ) E 0 ( p1 p2 ) /c multiply each term by hc / p1 p2 E 0 : hc ( p p2 )h (1 cos ) 1 now use h / p E0 p1 p2 Compton effect h h h hc 1 2 12 h h (1 cos ) 2 1 h h mec 2 h 1 2 1 2 or 1 2 1 if h1 me c 2 h 1 (1 cos ) 2 mec The introduction of this factor changes the definition of cross section and gives the Klein - Nishina formula : 1 2 2 d e 2 2 2 1 2 sin d me c 2 1 41 2 Inverse Compton 1 = initial photon energy in the lab frame 1' = initial photon energy in the e - frame 2 = photon energy in the lab frame after the scattering 2 ' = photon energy in the e - frame after the scattering 1' 1 (1 cos ) from the lab frame to the e - frame if 1' me c 2 one can apply the Thompson scattering, i.e. 2 ' 1 ' let' s go back to the lab frame : 2 2 ' (1 cos ) 1 2 (1 cos )(1 cos ) The photon energy has been incremented by a factor 2 . This is for 1 photon and 1 e - . Now we want to find the energy emitted per unit time by an isotropic distribution of photons scattered by a isotropic distribution of e N() = number of photons with energy U rad N() N(h )h - . Inverse Compton Let' s begin considering non - relativistic Thomson scattering. If the Poynting flux 2 c (power per unit area) of a plane wave incident on the e is S E the E will 4 accelerate the e -, and the accelerated e - will in turn emit radiation according to the Larmour formula. The net result is to scatter a portion of the incoming radiation with no net tranfer of energy. The scattered radiation had power : P S T c T U rad 2 U rad S /c E /4 Let' s consider now the radiation scattered by a relativistic e is valid in the primed frame if - . The Thomson formula ' me c 2 . In this case : P' c T U'rad We need to go back in the lab frame. We know that P is a Lorentz invariant, P P' c T U'rad and we only need to transform U'rad in U rad . therefore : Inverse Compton We know that ' (1 cos ). The rate at which successive photons arrive is multiplied by the same factor, so N'(') N() (1 cos ). In the e - frame : U'rad N' h ' N (1 cos )h (1 cos ) U rad 2 (1 cos ) 2 Thus the transformation between U'rad and U rad depends on the angle between the direction of the photons and the e - motion. The total energy density in the e - frame of a radiation field that is isotropic in the observer frame is obtained by integrating over all directions : U'rad U rad 2 2 d sin d (1 cos ) 0 2 0 where is the azimuthal angle around the x axis. 4 2 1 2 4( 2 1/4) 2 U'rad U rad (1 ) U rad 3 3 3 [ 2 (1 2 ) 1] 4 c T U rad ( 2 1/4) = Total power in the radiation field after IC upscattering. 3 The initial power of the photons was c T U rad , so the net power added to the radiation field is : 4 4 4 PIC c T U rad ( 2 1/4) c T U rad c T U rad ( 2 1) c T U rad 2 2 [( 2 1) 2 2 ] 3 3 3 P' P c T U'rad Thermal Comptonization average fractional energy mean number of change per scattering scatterings Compton y parameter f 4 2 kT 2 A 16 2 mean amplification per scattering mc i 3 assuming a thermal electron distribution : N(E) E 2 exp(E /kT) after k scatterings : k i A k the probability of a photon undergoing k scatterings before escaping is pk ( es ) ~ i esk The intensity of the emergent radiation at I(k ) ~ I(i ) esk ~ I(i ) k i k is proportional to pk ( es ) : log( es ) log( A) : Thermal Comptonization • depends on 2 parameters: the optical depth of the medium and the temperature. Any spectral shape can be produced with ad hoc choices of these parameters. • problem: in AGN ~ 1 [0.5-1.5] Two phases disc (Haardt & Maraschi 90’) Optically thick emission from the cool layer provides soft photons input for Comptonization and the hard Comptonized photons contribute to the heating of the thick phase. The feedback between the two phases determines the fraction of power emitted in three main components: a BB from the thick phase, a power law from Comptonization in the hot layer and a reflection component. The resulting spectrum is ~independent of the coronal parameters. Two phase disc • A fraction f of the gravitational power PG is dissipated in the hot layer of optical dept <1, while (1-f)PG is dissipated in the optically thick phase. • The total luminosity of the hot phase is LT=ALS, where LS is the luminosity of the thick phase. The luminosity added by the hot phase is LC=(A-1)LS • LC=LCU+LCD with LCD=LC ~0.5 • Photons directed downward are partly absorbed and partly reflected: – Lrfl=aLCD a~0.1-0.2 – Labs=(1-a)LCD will contribute to LS Energy balance LS (1 f )PG (1 a)LCD for phase 1 ALS fPG LS for phase 2 solving for A and L S LS 1 f 1 (1 a)PG f 1 f [1 (1 a)] The outgoing luminosity is given by Lout LS LCU Lrfl where : A 1 LCU : (1 ) f af L S and Lrfl LS 1 f f fa 1 f f fa For small f LCU and Lrfl are proportional to LS. For f~1 LCU and Lrfl are determined by a and Energy balance f A 1 1 f [1 (1 a)] log( es ) log( A) kT 2 A 16 2 mc The energy balance in the first ew. Implies a relationship between optical depth and temperature, and therefore the spectral shape of the Comptonized component! Emitted spectra Spettro dei raggi X Il disco di accrescimento che circonda il buco nero è una sorgente di radiazione UV e X di bassa energia (soft X-rays). Lo spettro di emissione è di tipo termico (radiazione di corpo nero). La “Comptonizzazione”(*) della componente soft X-rays in una corona che circonda il disco di accrescimento è una possibile causa dello spettro a legge di potenza per la componente di raggi X di energia 1-100 KeV (hard X-rays) La componente continua di hard Xrays incide sul disco di accrescimento e produce uno spettro riflesso, caratterizzato dai fenomeni di scattering Compton e di assorbimento fotoelettrico, seguito da emissione di righe di flourescenza o diseccitazione di tipo Auger. Lo spettro di emissione dei metalli è sovrapposto allo spettro continuo (*) Si tratta del fenomeno di ICS (Inverse Compton Scattering) per cui un fotone aumenta la propria energia a seguito di un processo di diffusione su un elettrone. La riga di emissione Fe Kα Quali sono le evidenze osservative del BH-Paradigma? Quali informazioni possono essere estratte dalle misure astronomiche sulle proprietà fisiche e geometriche del buco nero e del disco di accrescimento? A causa dell’elevato valore dell’abbondanza cosmica del ferro, la riga Fe Kα è la componente principale dello spettro di emissione. Per assorbimento fotoelettrico uno dei due elettroni della shell K (la shell più interna, con n=1) viene etratto dall’atomo, lasciando una lacuna. Un elettrone della shell L (n=2) occupa il “posto vacante”, rilasciando 6.4 KeV di energia. Lo studio del profilo di riga è un importante strumento di diagnostica delle proprietà fisiche e geometriche del buco nero e del disco di accrescimento [A. C. Fabian, G. Miniutti, astro-ph/0507409 v1 18 Jul 2005] Profilo di riga Numerosi effetti modificano il profilo della riga del ferro: • effetti RELATIVISTICI • effetti di ORIENTAZIONE • posizione dell’ultima orbita stabile (ISCO) • effetti di IONIZZAZIONE • profilo di EMISSIVITÀ del disco La simulazione dei diversi effetti permette di calcolare la forma di riga in funzione dei parametri fisici e geometrici del sistema costituito dal buco nero centrale e dal disco di accrescimento. Il confronto dei dati sperimentali con le previsioni teoriche fornisce importanti informazioni sulla natura degli oggetti astrofisici. Effetti relativistici EFFETTI RELATIVISTICI producono l’allargamento del profilo di riga e lo spostamento verso il rosso (red-shift) del picco di emissione. NEWTONIANO RELATIVITA’ SPECIALE EFFETTO DOPPLER EFFETTO DOPPLER TRASVERSO BEAMING RELATIVISTICO RELATIVITA’ GENERALE REDSHIFT GRAVITAZIONALE PROFILO DI RIGA CONVOLUZIONE DEI DIFFERENTI EFFETTI Broad lines from relativistic discs Axisymmetric disc orbiting a Schwarzschild BH. Disk extend from r0 to r1 and it is observed at inclination i. The ratio of the emitted energies of the photons from a point in the disk to the observed energies is given by: a u k a E em em 1 z E obs ua k a obs Second order contri butions to Doppler effect The expression of the Doppler effect in General Relativity is the ratio between the observer frame and emitted frame product between the quadri - velocity and the quadri - wave vector. (1 z) E em 1 E obs 0 u k u k ' obs a em dx' dx where u = = (-1;0,0,0) and u = are the emitted and observed frame ds ds ' quadri - velocities and k ( ;k ). c a k is the direction of propagation of the wave with angular velocity = 2 ; k 2 vp where v p is the phase - velocity ds is the metric. Let us consider the expression for ds provided by Roberson : 2MG 2 M 2G 2 MG 2 2 2 2 2 2 2 ds c 1 2 .... d t 1 2 d r r sin d d 2 4 2 2 rc c r rc ds2 c 2dt 2 dr 2 r 2 sin 2 d 2 d 2 2MG and 1 2 2 rc v ds cdt 1 2 where c cdt u (u 0 ;u i ) where u 0 ds where 1 MG rc 2 and v is the three dimensional velocity. 1 1 2 and u i dx i ds recall that u (1;0,0,0) and that k ( ;k ) then : c 1 v 1 u k ; u k i k c c c 1 2 1 2 vi c 1 2 1 (u a' k' ) em 0 (u k ) obs c c 1 vi 1 k c 1 2 1 2 1 1 v c (1 cos ) (1 i k ) c 1 2 1 2 MG 1/ 2 1 2 2 2GM 2 rc 1 1 2 2GM rc 1 2 rc (1 cos ) 1/ 2 2GM 1 2 rc 1/ 2 MG 2GM 2 (1 cos ) 1 1 2 2 1 2 rc rc 1/ 2 2GM 1/ 2 MG 2GM 2 1 1 2 2 1 (1 cos ) 1 2 2 rc rc rc 1/ 2 v 1 v 2 GM 1 cos ..... c 2 c 2 rc 2 leaving only the contributions up to second order in 1 v2 2 transverse Doppler effect 2c GM gravitational redshift 2 rc r 2GM if R ; Rg = 2 and cos /1 than : 3Rg c GM v r 1 ; and GM 1 c c rc 2 6R 6R 1 1 1 1 1 0 6R 12R 6R v c Effetto di orientazione La forma della riga dipende dall’angolo di inclinazione dell’asse del disco rispetto alla linea di vista. Al crescere dell’angolo di inclinazione, l’effetto principale è l’allargamento della riga che si estende verso le più alte energie. Il contenuto di riga nel blu è una misura dell’angolo di inclinazione del disco. i [deg] (Metrica di Schwarzschild) Posizione della ISCO Schwarzschild vs Kerr Il contenuto di riga nel rosso è una stima del raggio della ISCO (Innermost Stable Circular Orbit) e permette di distinguire un buco nero di tipo Schwarzschild (statico) da un buco nero di tipo Kerr (rotante). Rg GM c2 Schwarzschild RISCO = 6Rg Kerr RISCO = 1.24Rg parametro di spin a/M Effetti di ionizzazione 4 Fx (r ) (r ) n( r ) parametro di ionizazione Fx (r ) n(r ) Flusso di raggi X incidente per unità di area alla distanza r Densità di elettroni Se la materia del disco è fortemente ionizzata, aumenta l’energia di soglia del processo di assorbimento fotoelettrico, e di conseguenza si riduce l’efficienza per l’emissione della riga di fluorescenza. Profilo di emissività del disco Il profilo di emissività del disco definisce l’efficienza con cui la luce è emessa in funzione della coordinata radiale del disco. Si assume una legge di potenza: q = indice di emissività (r ) r q emissività uniforme emissività standard emissività “steep” Il caso “steep” implica un’illuminazione più efficiente a piccoli raggi, cioè nelle regioni più interne del disco di accrescimento. In questo caso, il profilo di linea si allarga e si estende verso il rosso: maggiore peso è dato, infatti, alle zone centrali del disco, dove dominano gli effetti di redshift gravitazionale. MGC – 6 - 30 -15 Galassia di tipo Seyfert I z = 0.00775 Osservazione della riga Fe Kα CONCLUSIONI • i = 33° ± 1° XMM – Newton Chandra • rin = 1.8 ± 0.1 Rg (ISCO) • a/M = 0.93 ± 0.01 KERR • ξ < 30 erg cm s-1 •r profilo di emissività out rbr rin qout = 3.0 ± 0.1 standard qin = 6.9 ± 0.6 steep