GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 Caratterizzazione degli acquiferi: l’integrazione di metodologie geoelettriche ed idrogeologiche D. Nieto Yàbar, A. Affatato,A. Bratus, G. De Carlo, E. Marin, D. RaptiCaputo, G. Santarato, C. Vaccaro Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Trieste Acque del Basso Livenza S.p.A., Annone Veneto (VE) Dipartimento di Scienze della Terra, Università di Ferrara 1 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 Contents: 1. 2. 3. 4. 5. Scope of the work Hydrogeological outline Geophysical methods Results Discussion. www.cami-life.net 2 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 1. Scope of the work •To delineate the whole sequence of aquifers, which spans several hundreds of meters •To estimate effective porosity of the aquifers, where data of water conductivity are available, •To monitorize the evolution of the aquifers with time 3 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 2. Hydrogeological outline: the study area Foto di Arno Mohl - WWFAustria 4 +140 160-0001 Conceptual 181-0046 51 +160 181-0029 181-0026 +120 32 Hydrogeological coarse A +80 Model +60 conglomerates unconfined indifferentiated aquifer (recharge area: pollution possible!) test area resurgence line +80 82 208-0029 165-0008 +100 +60 -120 169-0212 32 +120 -100 100 1428 181-0046 51 +140 169-0026 +160 -80 169-0036 4 +180 181-0029 181-0026 -60 169-0022 -40 1263C 985B 985A -20 208-0059 0.00 208-0050 +20 160-0001 +40 169-0006 +100 169-0051 4 +180 +40 +20 0-140 0.00 -20 -40 -160 -60 N24° -80 -100 N22° N163° N9° N22° -100 4 Km -120 -140 -160 N24° N22° N163° N9° N22° N175° 0 N145° 1000 m Sketch model hydr. section A N5° N4° N16° N169° N169° N147° N178° N53° N2° 2000 m 5 Sketch model hydr. section B Unconfined aquifer A0 +40 20 A1 +20 A1 0.00 50 169-0212 +60 1428 +80 169-0051 169-0026 169-0022 169-0006 1263C 985B 985A 0m 169-0036 208-0059 A0 coarse sand -20 B -40 Confined aquifers clay -60 -80 180 -100 A2 -120 A2 -140 200m -160 N178° N22° N53° N163° N2° 169-0212 1428 169-0051 169-0026 169-0036 +60 169-0022 +80 82 208-0029 165-0008 +100 169-0006 resurgence line 1263C 985B 985A 32 +120 N147° N24° 208-0059 +140 N169° 208-0050 181-0046 51 +160 160-0001 +180 N169° 181-0029 N16° 181-0026 N4° 4 Conceptual Hydrogeological Model multi-aquifer system +100 +40 +20 0.00 -20 -40 -60 -80 test area -100 -120 -140 -160 N24° N22° N163° N9° N22° N175° 0 N145° 1000 m Sketch model hydr. section A N5° N4° N16° N169° N169° N147° N178° N53° N2° 2000 m 6 Sketch model hydr. section B Aquifer systems (100-507 m b.g.l.) Torrate sand sandy-gravel gravel aquifer system clay 7 The test area: the “Torrate” exploitation field of “Acque del Basso Livenza S.p.A.” 8 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 3. The test area: geo-electrical methods 2D and 3D Electrical Resistivity Tomography (ERT: 0 to 100 m b.g.l.) Transient (Time Domain) Electromagnetism (TEMTDEM, about 50-500 m b.g.l.) In-hole resistivity measurements (60 to 507 m b.g.l.) 9 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 ERT Equipment: Syscal R2 Array: WennerSchlumberger Electrodes: up to 128 Electrode spacing: 5 m Acquisition mode: resistivity 10 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 The 2D profiles gravel (resistivity) Inversion method: smooth (Loke’s RES2DINV) clay First confined aquifer “A1” 11 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 The 3D ERT resistivity model First confined aquifer “A1” La formamethod: del primo Inversion smooth acquifero (Loke’s RES3DINV) -->Sub-horizontally layered geometry 12 TDEM: layout of the first survey (October 2005) TD14 Loop n° 3 TD11 TD13 TD10 TD1_t TD2/agosto 2D ERT profiles TD1/agosto TD12 Gruppo pumps pompe Loop n° 2 TD8 Equipment: Geonics TEM57/PROTEM Frequency bands: 25, 6, 2.5 Hz Transmitter loop: 200x200 m, current 10 to 12 A (M~4.105 to 5.105 A.m2) Receiver loop: 100 coils, 1 m diameter Receiver layout: centre and out of loop on each side TD6 TD7 TD9 TD4 TD3 Loop n° 1 TD1 TD5 TD2 13 200 m Tavola 2 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 TD13 TDEM: layout of the repeated survey (April 2006) TD2 TD10 TD11 TD1 TD14 TD3 Loop n° 3 Loop n° 1 TD12 TD4 TD7 pumps Gruppo pompe TD8 TD5 TD6 Loop n° 2 TD9 14 200 m 3 Tavola GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 TDEM data quality: sounding TD06/05 (central loop, high frequencies) sounding TD08/05 (out of loop, high frequencies) 1E+002 1E+003 1E+002 1E+001 mV 1E+000 mV 1E-001 Data (10 A) 1E+001 Data (10 A) 1E+000 1E-001 1E-002 1E-002 1E-003 1E-003 noise noise 1E-004 1E-004 1E-005 1E-005 0.01 0.1 1 ms 10 15 0.01 0.1 1 ms 10 TDEM: results (view from SW) Aquifer A1 Potential aquifer (unknown before this survey) Inversion: 1D smooth (Occam, unconstrained) 3D imaging via kriging interpolation of 1D models 16 In-hole resistivity measurements (lateral array) sand gravel sandy-gravel clay aquifer system 17 from Rapti-Caputo et al., Hydrogeology Journal, 2008, in print GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 Geophysical and hydrogeological parameters of the aquifers aquifer bulk resistivity (Wm) water conductivit y (mS/cm) thicknes s (m) formation factor Estimated porosity (%; m=1.3) transmissivity (m2/s) hydraulic conductivity (m/sec) A1 122* 530* 30±3 6.5 24 1.5x10-2 5x10-4 A2 225 380 13 8.5 19 5.2x10-3 4x10-4 A3 250 334 3 8.3 20 8.1x10-5 2.7x10-5 A6 330 296 >20 9.8 17 - - *october 2005 data. average value estimated by 1D constrained inversion with fixed geometry, using bore-hole direct information and seismic data (Giustiniani et al., 2008, Geophysical Prospecting). Effective porosity was estimated using Archie’s law: a=1, m=1.3. 18 from Rapti-Caputo et al., 2008, in print on Hydrogeology Journal Estimated effective porosity of aquifer A1 Pompe Area dei pozzi di alimentazione dell’acquedotto 19 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 Resistivity variations vs. time Wm 1 Second confined aquifer A2: too low thickness-to-depth ratio (lack of resolution) 1000 1 0 0 -200 -200 -400 -400 m Sixth confined aquifer: large variations of depth of its base, due to electrical equivalence and lesser data quality at the latest TDEM decay times. Additional information is needed. 100 10 Wm 100 m First confined aquifer A1: the resistivity increases about 13% 10 -600 -600 -800 -800 -1000 -1000 Occam’s 1D inverted models of Soundings at the centre of loop_2 (left) and at the centre of loop_3 (right). 20 Blue line: first survey; red line: repeated survey. 1000 Resistivity variations vs. time Electrical Conductivity (E.C) of water in the first confined aquifer measured “in situ”, october 2005: about 530 mS/cm in the test area E.C. measured on may 2006 in the test area : 460 mS/cm Observed decrease: 13%, in excellent agreement with TDEM data. 21 from Rapti-Caputo et al., 2008 GNGTS - 27° Convegno Nazionale Trieste 6-8 ottobre 2008 Conclusions Combining surface and in-hole resistivity data allows a satisfactory characterisation of a multi-aquifer sequence and of its main hydrogeological properties Combined ERT-TDEM are an efficient tool to image aquifers in an alluvial mattress TDEM has shown a sufficiently high sensitivity to resistivity variations, to be considered as a reliable tool for monitoring purposes; Aknowledgements: Research carried out with the financial support of the EC, contract LIFE04 ENV/IT/00500. 22 M. Giustiniani∗, F. Accaino, S. Picotti and U. Tinivella: Characterization of the shallow aquifers by high-resolution seismic data. Geophysical Prospecting, 2008, 56, 655–666 23 Based on the well known analytical relationship given by Niwas and Singhal (1981): T = KσR = KS/σ (2) where T = transmissivity, K = hydraulic conductivity, R = tρ (t and ρ are the thickness and resistivity of the aquifer layer) is the transverse resistance and S = t/ρ is the longitudinal conductance of the aquifer layer under study, the transmissivity in the whole surveyed area can be evaluated for aquifers A1, A2 and A3, bearing in mind that in areas of similar geologic setting and water quality, the product Kσ remains fairly constant. 24