Il progetto Precision Proton Spectrometer Nell’ultimo anno CMS e TOTEM hanno lavorato assieme per proporre un programma di fisica combinato. Questo ha dato luogo alla nascita del progetto CMS- TOTEM PPS, che somma le potenzialità dei due rivelatori Nicolò Cartiglia, INFN, Torino - PPS Il Memorandum of Understanding tra le due collaborazioni è in via di definizione, sarà completato nelle prossime settimane. CMS – TOTEM PPS sarà il primo rivelatore ad offrire una copertura di circa 16 unità di rapidità: CMS – TOTEM : coverage |h| < 8 1 2015: CMS- TOTEM PPS TOTEM Roman Pots (RPs): detect protons scattered from diffractive and photon induced processes TOTEM T1/T2 tracking stations at very forward angles CMS Forward Shower Counters (FSC) covering |η| ~ 6-8 CMS full event information |η|< 5 Nicolò Cartiglia, INFN, Torino - PPS Forward Shower Counters (59-114m) TOTEM RPs (220m) TOTEM T1, T2 2 Nicolò Cartiglia, INFN, Torino - PPS PPS Physics aide memoire 3 Nicolò Cartiglia, INFN, Torino - PPS CMS - TOTEM Approval steps 4 Nicolò Cartiglia, INFN, Torino - PPS Il nome del progetto… 5 PPS: Data Taking Phases Phase I (after LS1): low luminosity running (1-10 pb-1 ) (no new detectors) 1. Common data-taking using TOTEM in the forward region 2. Use cylindrical RP for impedance/detector studies for phase II 3. Develop the Movable Beam Pipe for phase II Nicolò Cartiglia, INFN, Torino - PPS Phase II (after LS1+ 1-2 years): high luminosity running. (1-10 fb-1 ) 1. Replace the TOTEM silicon strips with rad-hard pixel detector 2. Insert new timing detectors 2 pots for Tracking 2 pots for Timing protone 6 CMS - TOTEM Detector, phase II Scopo del rivelatore: • Rilevare i protoni in avanti con precisione ~ 30 micron • Associarli al vertice giusto Nicolò Cartiglia, INFN, Torino - PPS usando z-by-timing, 10 ps Usare z-by-timing per selezionare il vertice giusto 7 • Each tracking station (at +/-240m) consists of two stacks with 6 detector layers Baseline for Tracking Detectors • Detector readout based on PSI46dig and TBM08 ASICs developed for the CMS phase 1 upgrade (readout and readout controller chips) 8 • These ASICs featureper a 400Mbps digitalconsisting readout 2front-end tracking stations side, each of 6 silicon detector layers • Implementation of a 3D technology willsensors require cooling because of PSI46dig Each layer: 2x3 modulefor ofthe 3Dsensor silicon readout by the a significant leakage current (mostly after irradiation) – ROC and TBM08 ASICs developed for the CMS phase 1 upgrade Fairly easy to implement in this open topology cking Detector Sensors with 6xPCI46dig and 1xTBM08 use the following detector 6dig ROC:: 2 pixel pattern) Beam Y100 um pipe s n without tilting detectors for charge sharing a a flex cable: Readout flex cable connector HPS Tracking Readout 16 mm Sensor b-bonded to 6May PSI-46dig 21, 2013 chips PPS Port Card The design will be derived from Fpix upgrade design, specifically the Pilot Run upgrade detector Flex cables for: • Power • Readout • DSC/SSS The use of the4 digital CHIP readout chain allows synergy with the tracker upgrade group The PPS – tracking group: Torino, Genova, FERMILAB, Rio de Janeiro (all CMS members) Nicolò Cartiglia, INFN, Torino - PPS 24 mm TBM-08 Readout controller chip L’IMPEGNO ITALIANO 9 Due gruppi italiani coinvolti sul tracciatore e coordinazione Torino: 3 – 4 FTE Genova: 1 – 2 FTE Il gruppo di Torino ha lavorato negli ultimi anni allo sviluppo di rivelatori al silicio 3D – pixel Wire bonding Lab setup with climate chamber Laser scan setup Scheda di test per il chip digitale appena arrivata Collaborazione con FNAL and DESY su testbeam Support from: INFN Mechanical lab INFN Electronics lab PPS Pixel tracker Timeline • TDR: Sensor design: electrode configuration, slim/active edge, thickness • 2014: Dedicated sensor pre-production Nicolò Cartiglia, INFN, Torino - PPS • Early 2015: Laboratory and beam tests • 2015: Final design and production 10 Nicolò Cartiglia, INFN, Torino - PPS Back-up 11 CMS - TOTEM PPS: l’impegno italiano Il gruppo di Torino ha lavorato negli ultimi anni allo sviluppo di rivelatori al silicio in tecnologia 3D – pixel Nicolò Cartiglia, INFN, Torino - PPS Questi rivelatori sono al momento la “baseline” del PPS, per installazione nel 2015-6. FERMILAB sta lavorando all’elettronica di lettura. La baseline del progetto prevede l’utilizzo di PS46Dig. Il gruppo PPS – tracking è formato dai seguenti gruppi di CMS: Torino, Genova, FERMILAB, Rio de Janeiro. 12 Nicolò Cartiglia, INFN, Torino - PPS Accettanza Pixel planes Timing 13 CMS - TOTEM PPS Hardware per 2016 1) A tracking detector (silicon based) to measure position Position and angle, combined with the beam magnets, allows to determine the momentum of the scattered proton 2) A timing detector, to measure time. Nicolò Cartiglia, INFN, Torino - PPS Timing measurement (Cherenkov based) from both sides allows to determine which vertex the protons are coming from (in events with leading protons on both sides) and reject pile-up (proton from different pile-up collisions) Pixel planes Timing 14 WHY 3D SENSORS? 3D sensors consist of an array of columnar electrodes [r ∼ 5µm] of both doping types which penetrate in the silicon substrate perpendicularly to the surface. Electrode distance and active substrate thickness are decoupled Wishes for PPS sensors: • Slim edges: dead region < 100 mm • Tolerance to inhomogeneous irradiation: > 5 x1015 neq/cm2 close to the beam, much less on the opposite side 3D interesting features: Low depletion voltage High radiation hardness, also for inhomogeneous irradiation Slim edges, with dead area reduced to ~100 μm Active edges, with dead area reduced to a few μm Spatial resolution comparable with planar detectors Nicolò Cartiglia, INFN, Torino - PPS 15 I SENSORI NEL 2014 Piano a breve termine (ora – giugno 2014): Studio delle performance dei sensori 3D letti dal ROC PSI46dig sensori 1E nei wafer prodotti per ATLAS IBL (attualmente a IZM) Scelta della configurazione degli elettrodi (1E, 2E, 3E, 4E) imminente run di sensori FBK con vari layout ( e slim edge ~100 mm) ) Inter-electrode distance: 16 90 μm (1E), 62.5 μm (2E), 45 μm (4E) 2E scelta favorita al momento, ma 3E ancora da provare Piano a lungo termine: Disegno e preproduzione dedicata di sensori per PPS (estate 2014) Test sensori preproduzione (laboratorio pre/post irraggiamento e test beam) Disegno e produzione finale (2015) Nicolò Cartiglia, INFN, Torino - PPS 17 ATLAS IBL RESULTS ON IRRADIATED 3Ds Main IBL requirements: • Slim edges: dead region < 225 mm • Hit efficiency > 97% after 5 x1015 neq/cm2 of irradiation Test beam results for a CNM irradiated 3D detector (t = -15 oC): • Slim edge ~ 200 mm • Inefficiency at columns (not sensitive areas) • Overall efficiency: 97.5% (99%) at 00 (150) • 150 corresponds to IBL tilt angle Nicolò Cartiglia, INFN, Torino - PPS 18 PSI46dig Readout PSI46dig Readout • Six PSI46dig ROCs, bump bonded to a 16 x 24 mm2 silicon pixel sensor will be read out via a TBM08 ASIC, connected to a PPS Port Card by a flex cable: – Va, Vd, BV –analog, digital and sensor power – CLK, CTR from TTC system – SDA, RDA, RCL for fast ROC/TBM register programming – DATA – 400 Mbps digital data readout – RTD for temperature monitoring – Hreset – hardware reset Nicolò Cartiglia, INFN, Torino - PPS May 21, 2013 6 & 400 Mbps Readout of a 2x3 ROC tracking detector panel HPS Tracking Readout 6 PPS port card 19 PPS Port Card • PPS Port Card design will be derived from FPix upgrade design, particularly the Pilot Run upgrade detector: – Functions of existing Port_Card & Adapter_Board will be implemented for the Pilot_Run/PPS deectors as a single board – PPS Port Cards (PPS_PC) will be connected to the tracking detector panels by flex cables – Maximum flex cable length can be in excess of 750 mm FPix Port_Card / Adapter_Board / ROC connections Combined HPS_PC is outlined with dashed red line Nicolò Cartiglia, INFN, Torino - PPS May 21, 2013 HPS Tracking Readout 7