Il progetto Precision Proton Spectrometer
Nell’ultimo anno CMS e TOTEM hanno lavorato assieme per
proporre un programma di fisica combinato.
Questo ha dato luogo alla nascita del progetto CMS- TOTEM PPS,
che somma le potenzialità dei due rivelatori
Nicolò Cartiglia, INFN, Torino - PPS
Il Memorandum of Understanding tra le due collaborazioni è in
via di definizione, sarà completato nelle prossime settimane.
CMS – TOTEM PPS sarà il primo rivelatore ad offrire una copertura
di circa 16 unità di rapidità:
CMS – TOTEM : coverage |h| < 8
1
2015: CMS- TOTEM PPS
TOTEM Roman Pots (RPs): detect protons scattered from diffractive
and photon induced processes
TOTEM T1/T2 tracking stations at very forward angles
CMS Forward Shower Counters (FSC) covering |η| ~ 6-8
CMS full event information |η|< 5
Nicolò Cartiglia, INFN, Torino - PPS
Forward Shower
Counters (59-114m)
TOTEM RPs
(220m)
TOTEM T1, T2
2
Nicolò Cartiglia, INFN, Torino - PPS
PPS Physics aide memoire
3
Nicolò Cartiglia, INFN, Torino - PPS
CMS - TOTEM Approval steps
4
Nicolò Cartiglia, INFN, Torino - PPS
Il nome del progetto…
5
PPS: Data Taking Phases
Phase I (after LS1): low luminosity running (1-10 pb-1 )
(no new detectors)
1. Common data-taking using TOTEM in the forward region
2. Use cylindrical RP for impedance/detector studies for phase II
3. Develop the Movable Beam Pipe for phase II
Nicolò Cartiglia, INFN, Torino - PPS
Phase II (after LS1+ 1-2 years): high luminosity running. (1-10 fb-1 )
1. Replace the TOTEM silicon strips with rad-hard pixel detector
2. Insert new timing detectors
2 pots for Tracking
2 pots for Timing
protone
6
CMS - TOTEM Detector, phase II
Scopo del rivelatore:
• Rilevare i protoni in avanti con
precisione ~ 30 micron
• Associarli al vertice giusto
Nicolò Cartiglia, INFN, Torino - PPS
usando z-by-timing, 10 ps
Usare z-by-timing per selezionare il vertice giusto
7
• Each tracking station (at +/-240m) consists of two stacks with 6 detector layers
Baseline for Tracking Detectors
• Detector readout based on PSI46dig and TBM08 ASICs developed for the CMS
phase 1 upgrade (readout and readout controller chips)
8
• These
ASICs
featureper
a 400Mbps
digitalconsisting
readout
 2front-end
tracking
stations
side, each
of 6 silicon detector layers
• Implementation
of a 3D
technology
willsensors
require cooling
because
of PSI46dig
 Each layer:
2x3
modulefor
ofthe
3Dsensor
silicon
readout
by the
a significant leakage current (mostly after irradiation)
–
ROC and TBM08 ASICs developed for the CMS phase 1 upgrade
Fairly easy to implement in this open topology
cking Detector
Sensors with
6xPCI46dig and 1xTBM08
use the following detector
6dig ROC::
2 pixel pattern)
Beam
Y100 um
pipe
s
n without tilting detectors for charge sharing
a a flex cable:
Readout flex
cable connector
HPS Tracking Readout
16 mm
Sensor b-bonded to
6May
PSI-46dig
21, 2013 chips
PPS Port Card
The design will be derived
from Fpix upgrade design,
specifically the Pilot Run
upgrade detector
Flex cables for:
• Power
• Readout
• DSC/SSS
The use of the4 digital CHIP readout chain allows synergy with
the tracker upgrade group
The PPS – tracking group: Torino, Genova,
FERMILAB, Rio de Janeiro (all CMS members)
Nicolò Cartiglia, INFN, Torino - PPS
24 mm
TBM-08 Readout controller chip
L’IMPEGNO ITALIANO
9
Due gruppi italiani coinvolti sul tracciatore e coordinazione
Torino: 3 – 4 FTE
Genova: 1 – 2 FTE
Il gruppo di Torino ha lavorato negli ultimi anni allo sviluppo di rivelatori al
silicio 3D – pixel
Wire bonding
Lab setup with climate chamber
Laser scan setup
Scheda di test per il chip
digitale appena arrivata
Collaborazione con FNAL and DESY su testbeam
Support from:
INFN Mechanical lab
INFN Electronics lab
PPS Pixel tracker Timeline
• TDR: Sensor design: electrode configuration,
slim/active edge, thickness
• 2014: Dedicated sensor pre-production
Nicolò Cartiglia, INFN, Torino - PPS
• Early 2015: Laboratory and beam tests
• 2015: Final design and production
10
Nicolò Cartiglia, INFN, Torino - PPS
Back-up
11
CMS - TOTEM PPS: l’impegno italiano
Il gruppo di Torino ha lavorato negli ultimi anni allo
sviluppo di rivelatori al silicio in tecnologia 3D – pixel
Nicolò Cartiglia, INFN, Torino - PPS
Questi rivelatori sono al momento la “baseline” del PPS,
per installazione nel 2015-6.
FERMILAB sta lavorando all’elettronica di lettura. La
baseline del progetto prevede l’utilizzo di PS46Dig.
Il gruppo PPS – tracking è formato dai seguenti gruppi di
CMS: Torino, Genova, FERMILAB, Rio de Janeiro.
12
Nicolò Cartiglia, INFN, Torino - PPS
Accettanza
Pixel planes
Timing
13
CMS - TOTEM PPS Hardware per 2016
1) A tracking detector (silicon based) to measure
position
 Position and angle, combined with the beam magnets, allows
to determine the momentum of the scattered proton
2) A timing detector, to measure time.
Nicolò Cartiglia, INFN, Torino - PPS
 Timing measurement (Cherenkov based) from both sides
allows to determine which vertex the protons are coming from
(in events with leading protons on both sides) and reject pile-up
(proton from different pile-up collisions)
Pixel planes
Timing
14
WHY 3D SENSORS?
3D sensors consist of an array of columnar
electrodes [r ∼ 5µm] of both doping types
which penetrate in the silicon substrate
perpendicularly to the surface.
Electrode distance and active substrate
thickness are decoupled
Wishes for PPS sensors:
• Slim edges: dead region < 100 mm
• Tolerance to inhomogeneous irradiation: > 5 x1015 neq/cm2
close to the beam, much less on the opposite side
3D interesting features:
 Low depletion voltage
 High radiation hardness, also for inhomogeneous irradiation
 Slim edges, with dead area reduced to ~100 μm
Active edges, with dead area reduced to a few μm
 Spatial resolution comparable with planar detectors
Nicolò Cartiglia, INFN, Torino - PPS
15
I SENSORI NEL 2014
Piano a breve termine (ora – giugno 2014):
Studio delle performance dei sensori 3D letti dal ROC PSI46dig
 sensori 1E nei wafer prodotti per ATLAS IBL (attualmente a IZM)
Scelta della configurazione degli elettrodi (1E, 2E, 3E, 4E)
 imminente run di sensori FBK con vari layout ( e slim edge ~100 mm)
)
Inter-electrode distance:
16
90 μm (1E), 62.5 μm (2E),
45 μm (4E)
2E scelta favorita al momento, ma 3E ancora da provare
Piano a lungo termine:
 Disegno e preproduzione dedicata di sensori per PPS (estate 2014)
 Test sensori preproduzione (laboratorio pre/post irraggiamento e test beam)
 Disegno e produzione finale (2015)
Nicolò Cartiglia, INFN, Torino - PPS
17
ATLAS IBL RESULTS ON IRRADIATED 3Ds
Main IBL requirements:
• Slim edges: dead region < 225 mm
• Hit efficiency > 97% after 5 x1015 neq/cm2 of irradiation
Test beam results for a CNM irradiated 3D detector (t = -15 oC):
• Slim edge ~ 200 mm
• Inefficiency at columns
(not sensitive areas)
• Overall efficiency:
97.5% (99%) at 00 (150)
• 150 corresponds to IBL
tilt angle
Nicolò Cartiglia, INFN, Torino - PPS
18
PSI46dig Readout
PSI46dig Readout
• Six PSI46dig ROCs,
bump bonded to a 16 x
24 mm2 silicon pixel
sensor will be read out
via a TBM08 ASIC,
connected to a PPS
Port Card by a flex
cable:
– Va, Vd, BV –analog,
digital and sensor power
– CLK, CTR from TTC
system
– SDA, RDA, RCL for fast
ROC/TBM register
programming
– DATA – 400 Mbps
digital data readout
– RTD for temperature
monitoring
– Hreset – hardware reset
Nicolò Cartiglia,
INFN, Torino - PPS
May 21, 2013
6
&
400 Mbps
Readout of a 2x3 ROC tracking detector panel
HPS Tracking Readout
6
PPS port card
19
PPS Port Card
• PPS Port Card design
will be derived from FPix
upgrade design,
particularly the Pilot Run
upgrade detector:
– Functions of existing
Port_Card &
Adapter_Board will be
implemented for the
Pilot_Run/PPS deectors
as a single board
– PPS Port Cards
(PPS_PC) will be
connected to the tracking
detector panels by flex
cables
– Maximum flex cable
length can be in excess
of 750 mm
FPix Port_Card / Adapter_Board / ROC connections
Combined HPS_PC is outlined with dashed red line
Nicolò Cartiglia, INFN, Torino - PPS
May 21, 2013
HPS Tracking Readout
7
Scarica

CMS – TOTEM - INFN - Torino Personal pages