Coherent oscillations in superconducting flux qubit without microwave pulse S. Poletto1, J. Lisenfeld1, A. Lukashenko1 M.G. Castellano2, F. Chiarello2, C. Cosmelli3, P. Carelli4, A.V. Ustinov1 1 Physikalisches Institut III, Universität Erlangen-Nürnberg - Germany 2 Istituto di Fotonica e Nanotecnologie del CNR – Italy 3 INFN and Università di Roma “la Sapienza” - Italy 4 Università degli Studi dell’Aquila - Italy Outline Outline • Circuit description • Observation of coherent oscillations without microwaves • Theoretical interpretation • Summary and conclusions EuroSQIP S.Poletto 2 Circuit description Circuit description For Φx = Φ0/2 the potential is a symmetric double well Qubit parameters JJ 8 μA L 85 pH l 6 pH Fully controllable system EuroSQIP S.Poletto 4 Circuit description The system is fully gradiometric, realized in Nb, designed by IFN-CNR, fabricated by Hypres (100 A/cm2) Flux bias Fc 1/100 coupling Readout SQUID flux bias Fx junctions EuroSQIP 100mm S.Poletto 5 Coherent oscillations without microwaves Coherent oscillations without microwaves Main idea (energy potential view) E2 E1 E0 system preparation evolution ? ? readout Population of the ground and exited states is determined by the potential symmetry and barrier modulation rate EuroSQIP S.Poletto 7 Coherent oscillations without microwaves Main idea (fluxes view) Fx Fc Readout ? EuroSQIP S.Poletto ? 8 Coherent oscillations without microwaves Experimental results • Oscillations for preparation of the left |L and right |R states • Frequency changes depending on pulse amplitude Fc EuroSQIP S.Poletto 9 Theoretical interpretation Theoretical interpretation Symmetric double-well potential (Φx = Φ0/2 ) description in the base {|L, |R} |L |R It is possible to describe the system in the energy base {|0, |1} as well EuroSQIP S.Poletto |1 |0 L 0 1 0 1 2 R 2 11 Theoretical interpretation L 0 1 2 i E1 t dt i E0 t dt | e | 0 e | 1 |1 2 |0 PL t L | t 2 t t 0 ? EuroSQIP 1 1 cos t 2 E1 E0 dt expected oscillation frequency of up to 35 GHz S.Poletto 12 Theoretical interpretation Frequency dependence on pulse amplitude (Φc) Green dots: experimental data Blue line: theoretical curve EuroSQIP S.Poletto 13 Theoretical interpretation Note: In the case of asymmetric potential one should take into account a non-adiabatic population of the states {|0, |1} EuroSQIP S.Poletto 14 Conclusions Summary and conclusions Advantages of the demonstrated approach • Oscillations are obtained without using microwave pulses • Due to large energy level spacing the system can evolve at high temperature (up to h/kB 1.1K) • High frequency of coherent oscillations (up to 35 GHz) allow for high speed quantum gates • A qubit coherence time of ~ 500 ns should be sufficient to implement an error correction algorithm (required ~104 operations during the coherence time. See e.g.: arXiv:quant-ph/0110143) EuroSQIP S.Poletto 16