Rheological modelling of food production: Cereal goods Massimo Migliori Laboratory of Rheology and Food Engineering M. Migliori – 13 Marzo 2008 Summary Modelling View of Food Processes Start up optimisation Biscuit Baking M. Migliori – 13 Marzo 2008 Summary Modelling View of Food Processes Start up optimisation Biscuit Baking M. Migliori – 13 Marzo 2008 Food Process: Technological view Product • Quality control • Texture Unit operations • • • • Mixing Concentration - Drying Baking Packaging Operating conditions • • • • Pressure Temperatures Humidity Flow rates Raw Materials • Technological specifications • Chemical composition • Mechanical characteristics M. Migliori – 13 Marzo 2008 Modelling view Product Results • Quality Process control – product interaction • Product Texture development - design Unit Transport operations phenomena • Mixing Momentum balance • Concentration Energy Balance- Drying • Baking Mass balance •Thermodynamic Packaging • Equilibria Operating conditions conditions Boundary • • • • Pressure power Mechanical Temperatures Heat fluxes Humidity Air flow characteristics Flow rates time Residence Raw Materials Constitutive Equations • Technological specifications Rheological properties • Chemical composition Kinetic equation • Mechanical characteristics M. Migliori – 13 Marzo 2008 Rheology in food process Food system characteristics Multiphase complex systems: emulsion, suspensions Often aerated: “Strongly “ Structured “Weakly” Structured Different mechanical behaviour Leavening Pouring Extrusion Sheeting M. Migliori – 13 Marzo 2008 Dough characterisation Equilibrium spectrum Dough Structure Oscillatory regime Linear visco-elastic region Process properties Forming Bubble expansion Gas retention Large deformation1 Transient regime Non linear visco-elastic region 1 Uthayakumaran et al., Rheol. Acta (2002), 41, 162-172 M. Migliori – 13 Marzo 2008 Summary Modelling View of Food Processes Start up optimisation Biscuit Baking Final remarks M. Migliori – 13 Marzo 2008 RHEOLOGY IN BISCUIT MANUFACTURING Rheology development... • Theoretical model • Oscillatory measurements R&D Laboratories • Creep / Step shear rate test Process / Product design • Strain / Stress relaxation …Industrial application… Process control Optimisation • Empirical test • Uncontrolled flow field • Viscosity measurement …Why ? • Lack of theoretical knowledge (Modelling) • Time saving analysis need • Materials / process conditions variability M. Migliori – 13 Marzo 2008 RICH TEA PRODUCTION PROCESS Process operations Recipe Ingredient • Sheeting Range % [w/w] Flour 59.9% - 60.8% • Baking Water Sugar Fat 9.7% - 8.3% 16.7% - 17.0% 13.0% - 13.2% Salt 0.6% • Mixing • Packaging Dough characteristics • Developed dough • Mixing time ~ 10 min • Final temperature 38 ~ 41 °C Changes in dough may lead to: • Machine-ability issues • Biscuit roundness variability • Biscuit height variability • Moisture issues • Colour out of control M. Migliori – 13 Marzo 2008 ON LINE PRODUCTION MONITORING Dough Feed Cutter To the oven Sampling point Rollers Rheological test • Stress relaxation out of linear range • Sampling end of sheeting • Low total testing time (~ 5 min) Advantages • Continuous production monitoring over 8 hr • Fundamental measurement • Dough visco-elastic properties analysis M. Migliori – 13 Marzo 2008 STRESS RELAXATION TEST – SET UP AND ANALYSIS 0,2 0,15 10 0,1 1 Strain [%] Elastic Modulus G [kPa] 100 G t S t n 0,05 0,1 0,01 0,1 1 10 Time [s] 0 100 • Temperature 32°C • Strain 15% • Weak Gel data treatment2 1 Gabriele et al., Rheol. Acta (2001), 40-2, 120-127 • Time range 1 to 10 s M. Migliori – 13 Marzo 2008 PRODUCTION AUDIT RESULTS 5000 0,370 0,365 0,360 4600 0,355 4400 0,350 4200 4000 10.30 n [-] -n S [Pa s ] 4800 0,345 0,340 12.30 14.30 16.30 Time [hh:mm] M. Migliori – 13 Marzo 2008 MODEL PARAMETERS INTERPRETATION G t S t n S Lenght Network strenght Mainly responsible for dough recovery after cutting Biscuit roundness N Network extension Related to dough behaviour during baking (gas retention ability) Biscuit height • Moisture content • Texture M. Migliori – 13 Marzo 2008 DOUGH NETWORK STRENGHT – BISCUIT LENGTH High S (Tough Dough) + Good recovery capability + Good machine-ability - Machine-ability Issues - Roundness control 63 4800 62,8 4600 62,6 4400 62,4 4200 62,2 •S • Biscuit length 4000 10.00 12.00 14.00 Time [hh:mm] Biscuit Length [mm] -n S [Pa s ] 5000 Low S (Weak Dough) 62 16.00 M. Migliori – 13 Marzo 2008 High value: Good gas retention ability (bulky biscuits risk) Low value: Poor rise during baking (flat biscuits risk) 0,360 6,8 0,355 6,6 0,350 6,4 0,345 6,2 0,340 0,335 10.00 6 •n Biscuit Height [mm] n [-] DOUGH NETWORK EXTENSION – BISCUIT HEIGHT • Biscuit height 12.00 14.00 Time [hh:mm] 5,8 16.00 M. Migliori – 13 Marzo 2008 S VARIABILITY DURING NORMAL PRODUCTION 5600 -n S [Pa s ] 5100 4600 4100 3600 6/11 20/11 4/12 18/12 1/1 15/1 29/1 12/2 26/2 Date [dd/mm] S [Pa s-n] Average 4585 12/3 26/3 9/4 23/4 p≥95% Lower limit Upper limit 4304 4866 M. Migliori – 13 Marzo 2008 n VARIABILITY DURING NORMAL PRODUCTION 0,380 0,370 n [-] 0,360 0,350 0,340 0,330 0,320 6/11 20/11 4/12 18/12 1/1 15/1 29/1 12/2 26/2 Date [dd/mm] n [-] Average 0.348 12/3 26/3 9/4 23/4 p≥95% Lower limit Upper limit 0.333 0.363 M. Migliori – 13 Marzo 2008 DOUGH RHEOLOGY DURING UNOPTIMISED START-UP 0,370 5500 -n S [Pa s ] 0,380 0,360 5000 0,350 4500 4000 3500 0.00 n [-] 6000 Cold plant increases dough toughness (low mixing temperatures) 0,340 Machinability issues High waste level 2.00 0,330 0,320 4.00 Time [hh:mm] M. Migliori – 13 Marzo 2008 START-UP ANALYSIS AND ACTIONS Corrections may be introduced in • Recipe • Process conditions Actions • Addition of SodiumMetaBisulphite (SMS) It Acts as dough conditioner breaking sulphuric bridges (Dough weaking) • Mixing time Both to improve dough development and increase final dough temperature. Plant warm-up is speeded up Modifications in start-up Start-up A B SMS in water solution +20% +10% Mixing time Standard +50% M. Migliori – 13 Marzo 2008 START-UP A SMS in water solution +20% +10% Mixing time Standard +50% Increase in SMS Improves dough toughness control (S on target straight away) Decrease in network extension (n above the target) 4800 0,400 0,380 4400 0,360 n [-] -n S [Pa s ] Start-up A B 4000 0,340 3600 0.00 0,320 1.00 2.00 Time [hh:mm] M. Migliori – 13 Marzo 2008 START-UP B SMS in water solution +20% +10% Mixing time Standard +50% Increase in mixing time Recover of network extension (n on target after 20 min) also as result of decreasing extra SMS Overdeveloped dough (S below the target) 5000 0,400 4800 -n 4400 0,360 4200 4000 n [-] 0,380 4600 S [Pa s ] Start-up A B 0,340 3800 3600 0.00 0,320 1.00 2.00 Time [hh:mm] M. Migliori – 13 Marzo 2008 OPTIMISED START-UP CONDITIONS Start-up A B C SMS in water solution +20% +10% +10% Mixing time Standard +50% +25% 5000 0,380 0,370 0,360 4600 0,350 n [-] -n S [Pa s ] 4800 0,340 4400 0,330 4200 0.00 0,320 1.00 2.00 3.00 4.00 Time [hh:mm] Both parameters on target straight away! M. Migliori – 13 Marzo 2008 FINAL REMARKS • Application of stress relaxation test as “on site measurement” • Data interpretation using theoretical model • Physical meaning of parameters • Continuous process monitoring allows determination of optimal range • Start-up optimisation based on structure/process relationship knowledge IMPACT ON INDUSTRIAL BUSINESS • Reduction of waste at the start-up • Rheological tool to control process conditions • Support to process optimisation • Help in tackling usual raw material variability M. Migliori – 13 Marzo 2008 Summary Modelling View of Food Processes Start up optimisation Biscuit Baking Strong network Weakly structured material M. Migliori – 13 Marzo 2008 Modelling approach Transport Phenomena hold in a pseudo-homogeneous system. Heterogeneity is accounted in a Microsystem Macrosystem (Homogeneus) MACROSYSTEM Continuous medium Material properties accounting of multiphase system Effect of external boundary conditions Mass and heat exchange in microsystem as sink Microsystem (Heterogeneous) Thermodynamic status (T, P, concentrations) from macrosystem balances Multi phase – Generally one is gas Mass exchange among phases Thermodynamic equilibrium at interfaces Momentum balance accounting visco-elasticity MICROSYSTEM M. Migliori – 13 Marzo 2008 Texture of Cereal Goods Cereal product texture is controlled by void fraction and bubbles morphology Heterogeneous system SPONGY CLOSED Gas Cells Gas + Paste STABILISATION BAKING CRUNCHY OPEN Gas Cells COALESCENCE Rheological behaviour controls the gas cells evolution M. Migliori – 13 Marzo 2008 BAKING PROCESS - 1 Structure development Formulation Product height Process Organoleptic properties “optimal” profile “wrong” profile time M. Migliori – 13 Marzo 2008 Summary Modelling View of Food Processes Start up optimisation Biscuit Baking Strong network Weakly structured material M. Migliori – 13 Marzo 2008 M. Migliori – 13 Marzo 2008 Objective Predict biscuit behaviour Biscuit height, mm Raise 8 Peak height - time Collapse mechanism 7 Final biscuit height 6 Moisture content Main Modelling issues 5 Predict changes in rheology Account for process parameters: Oven baking profiles Raising agent amount 4 3 2 0 50 100 150 200 Baking Time, s 250 300 M. Migliori – 13 Marzo 2008 Macrosystem - Equations Hypothesis Cylindrycal system Axial and radial symmetry Every internal nods includes a microsystem of expanding bubbles Biscuit growth Raising agents Water evaporation Internal diffusive mechanism for energy and mass transfer T BcPB T K B i Sei t z z i From microsystem * cw * cw 1 Deff Fw 4R 2nb W 1 P t z z M. Migliori – 13 Marzo 2008 8 Biscuit height, mm 7 Closed Microsystem 6 5 4 3 2 0 50 100 150 200 Baking Time, s 250 300 PR r Pinf PG R Single bubble model Gas - Liquid equilibrium constitutive equation Thermodynamic (Water, R.A., Air, equilibrium of Dry twomatter) phase multi-component y k xsystem i i i t 2 Mechanical equilibrium in rr R t ' R t ' 3extension ln of dt ' 3 dr Gt ' ,T , xw R t 'biaxial an R Rt ' R R r 0 Gt ' ,T , x st ' ,T , x nt ',T , xw aerated system w w Paste Weak Gel constitutive equation Growth stops as effect of coalescence model M. Migliori – 13 Marzo 2008 8 Expansion: rheological data 6 5 4 3 2 50 100 150 200 Baking Time, s 250 300 1000000 0.5 0.4 100000 0.3 0.2 10000 Tan delta [-] 0 G', G" [Pa] Biscuit height, mm 7 0.1 1000 0 20 40 60 80 Temperature [°C ] 100 M. Migliori – 13 Marzo 2008 8 Biscuit height, mm 7 Coalescence model 6 5 4 3 2 0 50 100 150 200 Baking Time, s 250 300 Coalescence implies the opening of the interacting bubbles. This phenomenon may occur in different ways: Thickness reaches locally a minimum value ... …local stress reaches a critical value… In both cases DEFORMATION WORK REACHES A CRITICAL VALUE (RUPTURE POINT) M. Migliori – 13 Marzo 2008 Rupture work Under the hypothesis of affine deformation2 h qmax h(t) R(t) R 2 R0 Kinematic parameter: peak deformation 1 R 0 cos 2 max 2 2 Charalambides et al, Rheol. acta (2002), 41, 532-540 M. Migliori – 13 Marzo 2008 Model Instantaneous strain power4 W I II III I II I III II III I II III Elastic energy (up to rupture point) tr o Wdt ln 1 I II d ln C 5Constitutive dG t t S n t n 1 dt p I t 't " C t " dt " t' 0 4 equation: “Weak Gel model” Williams JG, Stress Analysis of Polymers (1980), E. Horwood, Chichester 5 Gabriele et al., Rheol. Acta M. (2001), 40-2, 120-127 Migliori – 13 Marzo 2008 Device set-up Sample Laser beam Heating system* Air In • Integrated as sample holder • Surface termo-couple • PID Controller *www. minco.com M. Migliori – 13 Marzo 2008 Deformation work Bubble height [mm] 80 60 40 T= 30°C T= 40°C T= 50°C 20 0 0 10 20 Time [s] 30 40 M. Migliori – 13 Marzo 2008 8 Biscuit height, mm 7 Open microsystem 6 5 4 3 2 0 50 100 150 200 Baking Time, s 250 300 Coalesced bubbles act as a necklace A different mechanical equilibrium holds, based on elastic recovery Hencky Strain Kelvin Voigt mechanical model t w0 wi e 0 i i Mass exchange in an “equivalent” channel open toward the ambient T BcPB T K B i Sei t z z i From microsystem * cw * cw 1 Deff Fw 4R 2nb W 1 P t z z M. Migliori – 13 Marzo 2008 Validation – Different Baking profiles Height evolution Biscuit Height [mm] 10 8 6 4 Fast Profile Normal Profile 2 0 50 100 150 200 250 300 Baking time [s] M. Migliori – 13 Marzo 2008 Validation – Different Baking profiles Weight loss 10.5 Biscuit Wheight [g] 10 9.5 9 Fast Profile 8.5 Normal Profile 8 0 50 100 150 200 250 300 Baking time [s] M. Migliori – 13 Marzo 2008 Validation – Different Rheology Change in flour Biscuit Height [mm] 10 8 6 4 Fast Profile Normal Profile 2 0 50 100 150 200 250 300 Baking time [s] M. Migliori – 13 Marzo 2008 Sensitivity – Void fraction Biscuit Height [mm] 8 6 0.05 4 0.04 0.03 2 0 50 100 150 200 250 Baking time [s] M. Migliori – 13 Marzo 2008 Summary Modelling View of Food Processes Start up optimisation Biscuit Baking Strong network Weakly structured material M. Migliori – 13 Marzo 2008 BAKING PROCESS - 2 PSEUDO HOMOGENEOUS APPROACH t 1. Bubble expansion (micro) 2. Bubble interaction (stabilisation) 3. Dough spreading 4. Macroscopic transport phenomena M. Migliori – 13 Marzo 2008 2. BUBBLE STABILISATION - 1 Bubble Expansion Stabilisation by Strain Hardening hh lim or φφ lim void fraction h(t) M. Migliori – 13 Marzo 2008 2. BUBBLE STABILISATION - 2 Limit conditions Dough Cellular structure Cellular materials1 E eff P 1 2ν eff 2 1 φ E Eφ Poisson modulus E Young modulus P cell pressure eff related to the cellular system considering a dough, E<<P, eff1/3, limit conditions φlim 1Schjodt-Thomsen et al., Pol. Eng.Sci., 41 (2001) P 3 E eff M. Migliori – 13 Marzo 2008 3. DOUGH SPREADING - 1 N dough layers i-th layer: internal friction UNLUBRICATED SQUEEZE FLOW 1-st layer: no friction on band LUBRICATED SQUEEZE FLOW F=Above layers weight F= Biscuit weight M. Migliori – 13 Marzo 2008 3. DOUGH SPREADING - 2 UNLUBRICATED SQUEEZE FLOW Power law fluid F h 2 n 1 πkR F 2 n 1 h 2n n 3 n n n 3 h LUBRICATED SQUEEZE FLOW Power law fluid 6 ηγ F πR 2 ε ε 1 dh 2h dt ηε 6 ηγ Biscuit diameter H hi i H M. Migliori – 13 Marzo 2008 4. MACROSCOPIC TRANSPORT PHENOMENA MASS BALANCE EQUATION (water, R.A., R.A. products) ci 1 φ 1 rN ir N iz Ri 1 φρP Si t r r z ENERGY BALANCE EQUATION T 1 qr qz λi Si ρc p t r z i CONSTITUTIVE EQUATIONS Fick law Fourier law N iz r Di ,w Si: net flow bubblepaste i: water latent heat c w N wz r Dw ,D z r cw 1 φxi xi N wz r z r q k T M. Migliori – 13 Marzo 2008 MATERIAL CHARACTERISATION Bubble expansion Biscuit spreading Paste Linear Viscoelastic properties Frequency sweep test, 0.1-20 Hz; Time cure 0.1 Hz, 30°C – 110 °C Dough Steady Shear properties Flow curve 0.1 – 20 s-1 Bubble stabilisation Dough formulation Flour, sugars, glucose syrup, liquid egg, fats, water, raising agents Elongational properties Back extrusion test D1 RA D2 RA D3 vacuum M. Migliori – 13 Marzo 2008 LINEAR VISCOELASTIC PROPERTIES - 1 Sample D3, Time cure, 1°C/min 1.2 1000 0.8 0.6 100 0.4 G' G" 0.2 tg delta [-] 10 30 50 70 T [°C] tg [-] G',G'' [Pa] 1 90 0 110 M. Migliori – 13 Marzo 2008 LINEAR VISCOELASTIC PROPERTIES - 2 Sample D3, Frequency sweep G* A ω 1000 30°C 70°C 10 0.1 1 10 90°C 10000 2 100 Frequency [Hz] 1 z Weak gel model 50°C 1.6 1000 1.2 tg delta [-] 100 G* [Pa] G* [Pa] 10000 30°C 50°C 70°C 90°C 0.8 100 30°C 50°C 0.4 70°C 90°C 100 0.1 0.1 11 10 10 100 100 [Hz] Frequency [Hz] Frequency M. Migliori – 13 Marzo 2008 STEADY SHEAR PROPERTIES τ k γ n Sample D2, Flow curve 1000 Viscosity [Pa.s] 30°C 50°C 70°C 100 10 1 0.1 1 10 100 Shear Rate [1/s] M. Migliori – 13 Marzo 2008 BACK EXTRUSION TESTS Instron machine F Feff = F - Fdrag Head σ eff z Feff πRP2 1 h0 ε ln 2 h Rp h Dough E eff σ eff ε Re M. Migliori – 13 Marzo 2008 BACK EXTRUSION TESTS Sample D1-D2 E eff 8000 σ eff ε Pa 6000 4000 D1 2000 D2 0 0 0.1 0.2 0.3 0.4 0.5 M. Migliori – 13 Marzo 2008 MODEL SENSITIVITY - 1 T [°C] Standard oven conditions: typical surface temperature profile 0 100 200 Time [s] 300 400 M. Migliori – 13 Marzo 2008 MODEL SENSITIVITY - 2 lim Raising Agent Effects D1 0.55 D2 0.73 Biscuit Height [mm] 9 D1 8 D2 7 6 5 4 3 0 100 200 300 400 Time [s] M. Migliori – 13 Marzo 2008 MODEL SENSITIVITY - 3 Oven conditions Effects Std: standard heat fluxes +5% : 5% increased fluxes Biscuit Height [mm] 9 Std 8 +5% 7 6 5 4 3 0 100 200 300 400 Time [s] M. Migliori – 13 Marzo 2008