Modeling Flash Memories for IC Designs Luca Larcher Università di Modena e Reggio Emilia Reggio Emilia - Italy [email protected] Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Flash memories Flash memory market increased exponentially in the last years Flash are pervasive in every modern electronic system Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Floating-Gate (FG) transistor The FG transistor is the basic element of NOR and NAND Flash memories The information bit is stored by transistor threshold voltage (VT), which can be changed in a non-destructive way by injecting/removing charge to/from FG Control Gate INTERPOLY OX. Floating Gate TUNNEL OX. Drain Source P-substrate Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia NOR Flash array In a NOR array, a cell, i.e. a FG transistor is identified by a WL – BL cross Single NOR Flash = FG MOSFET Sourcelines G Bitlines (BL) Wordlines (WL) S D Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia NAND Flash array Bitlines BSL Select Transistors NAND Flash cells are organized in strings Each string is comprised of 32/64 cells, connected in series High density, i.e. high capacity is thus achieved 16 Wordlines GSL Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Outline Motivations Floating Gate (FG) transistor model: DC model and FG voltage calculation Transient model Program/erase current Stress Induced Leakage Current, SILC NOR and NAND Flash Spice-like models Parameters and extraction procedure Simulation results Conclusions Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Motivations Designing NAND and NOR Flash memories requires Spicelike circuit simulations, that need accurate compact models to be effective Flash memory cells are usually replaced with standard MOS in industry circuit simulations FG potential is usually calculated through the capacitive coupling coefficient method, i= Ci/CT VFG CG VCG DVD SVS BVB Constant capacitive coupling coefficients leads to errors in VFG calculation Optimum models should be: Spice-like, compact, accurate, usable in DC and transient conditions Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia The FG transistor DC model Control Gate CPP Floating Gate VFG Source P-substrate Body Drain CPP = interpoly dielectric capacitance VFG = Floating Gate voltage Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia VFG calculation CG FG VFG S D VFG is calculated by solving the charge neutrality equation at the FG node: QMOS + QCPP = QP/E B QCPP = CPP(VFG-VCG) QP/E = charge injected into the FG during program/erase (constant in DC conditions) QMOS = f(VFG,VS,VB,VD) is a the charge on the MOS gate, which is a complex function of voltages, calculated by means of the MOS model charge equations Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Solution of charge equation The charge neutrality equation is an implicit equation in VFG: F(VFG) = QMOS(VFG) + QCPP(VFG) – QW/E = 0 No analytical solution due to the complex QMOS expression Spice-like simulator solves it numerically through suitable convergence algorithms F is monotonic versus VFG for all bias combinations (VCG,VS,VB,VD), assuring the uniqueness, i.e. the physical meaning of the derived VFG solution Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia The FG transistor transient model Current sources (IW1, IW2, IW3) are included to model program and erase currents, i.e. Fowler-Nordheim (FN) and Channel Hot Electron (CHE) currents Control Gate CPP Floating Gate Iw1 Iw3 Iw2 Source Drain Body Luca Larcher September, the 14th P-substrate Università degli Studi di Modena e Reggio Emilia VFG Fowler-Nordheim current sources Current sources analytically modeling Fowler/Nordheim currents allow reproducing program-erase and erase operations of NAND and NOR Flash memories, respectively. BFN IFN Fox A T A F exp Fox 2 FN ox AT AFN , BFN FOX Luca Larcher September, the 14th = area of the tunneling region = Fowler-Nordheim physical coefficients depending on the Si/SiO2 barrier = electric field across the tunnel oxide Università degli Studi di Modena e Reggio Emilia FOX calculation FOX V FG VS,D,B VFB S P TOX VFB = flat-band voltage – S = surface potential drop at Si/SiO2 interface – P = surface potential drop at poly-Si/SiO2 interface To correctly evaluate S and P, poly depletion and charge quantization effects are taken into account through a self consistent model [1] The so calculated FOX has been included in the FG model through empirical formulas – [1] L. Larcher et al., “A new model of gate capacitance …”, IEEE Trans. Elect. Devices Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia CHE current source CHE and Channel Initiated Secondary ELectron (CHISEL) currents can be modeled through simplified approaches allowing modeling the high energy distribution of hot carriers [2] CHISEL Gate Source CHE e1 Impact Ionization M4 e3 M3 h2,3 [2] M2 M1 h2 e1,2 Drain Body L. Larcher, P.Pavan, “A New Analytical Model of Channel Hot Electron (CHE) and CHannel Initiated Secondary ELectron (CHISEL) …,” MSM 2002, 2002, pp. 738-741. Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Stress Induced Leakage Current, SILC SILC [3] is included through current sources allowing simulating the threshold voltage degradation due to the aging of the tunnel oxide induced by P/E cycles SILC modeled assuming the inelastic Phonon Trap-Assisted Tunneling (PTAT) as conduction mechanism SiO2 cathode Ep [3] L. Larcher et al., IEEE Trans. Electr. Devices, Vol.48, N.2, 2001, pp.285-288. Luca Larcher September, the 14th xT tox anode Università degli Studi di Modena e Reggio Emilia NOR Flash model & parameters The NOR Flash Spice-like model is the FG MOSFET model Parameters of M1 are extracted applying the standard MOSFET parameter extraction procedure to the dummy cell, that is a cell with FG and CG short-circuited Additional parameters from SEM measurements CG and TCAD simulations : FG-CG capacitance; FG parameters of current sources IW1 IW2 Practically, no additional costs compared to a S D M 1 standard MOSFET Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia NAND Flash model & parameters The NAND Flash memory string model is a sub-circuit comprised of equivalent dummy cell MOSFETs, inter-poly capacitances, coupling capacitances, P/E current sources WL2 WL1 WLn CFC CFC CFS BLm+1 WLn WL1 SSL CFS CFFB CFFB CFS DSL SL BLm CFL Luca Larcher September, the 14th CFL Università degli Studi di Modena e Reggio Emilia NAND Flash model & parameters -2 Coupling capacitances between FGs of adjacent cells, FCF and CFFB, are additional parameters derived from SEM measurements and TCAD simulations Parameter of the equivalent MOSFET are extracted from a string of dummy cells, paying attention to correctly account for series resistance effects Again, current sources can be inserted to account for program/erase Fowler-Nordheim currents SSL SL Luca Larcher September, the 14th WL1 WL15 WL32 DSL BL Università degli Studi di Modena e Reggio Emilia DC – NOR Flash: IDS-VCG 10-4 VSB (exp) 0..2 step 0.5V 10-5 I DS (A) 10-6 VSB= 0V W=0.25 mm L=0.375 mm 10-7 10-8 VSB= 2V 10-9 VDS= 0.1V 10-10 simulation -11 10 2 3 4 5 6 7 VCG (V) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia DC – NOR Flash: IDS-VDS 25 simulation VCG= 4 V VB= 0 V 20 I DS (mA) VCG= 3.75 V 15 VCG= 3.5 V 10 VCG= 3.25 V 5 VCG= 3 V 0 0 0.3 0.6 0.9 1.2 1.5 1.8 VDS (V) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia DC – NOR Flash: IDS-VCG 60 50 I D (mA) 40 30 20 W=0.16 mm L=0.3 mm simulation VD (exp) 0.1 V 0.7 V 1.3 V 1.9 V 10 0 2 2.5 3 3.5 4 4.5 5 5.5 6 VCG (V) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia DC - NAND Flash: IDS-VCG 1.0E-06 cell #16 in the string VD=0.1V IDS [A] 1.0E-07 1.0E-08 VB=0V VB=-1V 1.0E-09 VB=-2V SIM 1.0E-10 -1.0 0.0 1.0 2.0 3.0 VCG [V] Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Erase – NOR Flash: VT - time 7 VG0(exp) -2.7..-4.7 step 1V 6 V T (V) 5 VG0= -4.7 V VCG 4 3 Erase bias: D float VS=VB=8 V VG,MAX VG0= -2.7 V 2 1 VG0 simulation 0 0 0.1 Time VB= VS= 8 V 0.2 0.3 0.4 Time (s) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Erase – NOR Flash: VT - time 7 dV/dt (exp)= 12.5,20,25,30,35,50,60 V/s simulation 6 V T (V) 5 4 dV/dt= 12.5V/s 3 2 1 0 0 dV/dt= 60 V/s 0.1 0.2 0.3 0.4 Time (s) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Program – E2PROM Flash: VT 4 3 Lines: simulations Symbols: measures VT (V) 2 1 0.3 0 0.4 0.5 TRISE(m s) -1 0.6 12V VCG-ramp VD=VB=0V TRISE VS=0V -2 -3 No free parameter to improve the fitting quality!! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (ms) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Program – E2PROM Flash: tunnel current 60 ITUN (pA) excellent fitting using real VCG 50 ramp!! VVCG ramp D-ramp Nominal 40 Real TRISE 30 20 10 0 0.4 Lines: simulations Symbols: measures 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Time (ms) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia E2PROM Flash: retention simulation NC = number of P/E cycles NC 4.7 E2PROM cell left unbiased in retention 10 - 1 - fresh VT(V) 4.2 10 2 3.7 10 10 3.2 VT reduction induced by SILC, included by some current sources 3 4 NC= 105 2.7 0 1 Luca Larcher September, the 14th 2 3 4 5 6 Years 7 8 9 10 Università degli Studi di Modena e Reggio Emilia Advantages & conclusions This Flash memory modeling approach has several advantages The parameter extraction procedure is simple it is similar to the one of a standard MOSFET and few additional parameters are derived from SEM measurements and TCAD simulations The simulation time is comparable to MOSFET VFG calculation procedure does NOT use capacitive coupling coefficients the VFG calculation is much more accurate compared to the usual method considering capacitive coupling coefficients as constants, which introduces errors Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia Flash coupling coefficients: CG CG VB=-1V VS=0V 0.72 0.70 0.68 0.66 0.64 9 8 66.75 55.63 44.5 33.38 22. 11.13 0 0 1 2 3 VCG 5 VFG CG VCG DVD SVS BVB Luca Larcher September, the 14th 4 VD Università degli Studi di Modena e Reggio Emilia Advantages & conclusions -2 NOR and NAND Flash compact models are simply developed as sub-circuit DC, transient and reliability simulations of single devices and circuits excellently reproduce measurements without free parameters to improve the fitting quality Easily scalable: scaling rules are taken into account in the MOSFET model itself, and they do not affect the VFG calculation Easily upgradeable: voltage and current sources can be replaced/modified independently Can be used for statistical analysis (effects of statistical fluctuation of critical parameters, …) Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia References o Paolo Pavan, Luca Larcher, Andrea Marmiroli, Floating Gate devices: Operation and Compact Modeling, Kluwer Academic Publishers, 2004, 140 pp., ISBN 1-40207731-9 L. Larcher et al., Bias and W/L Dependence of Capacitive Coupling Coefficients in Floating Gate Memory Cells, IEEE Trans. on Electron Devices, Vol. 48(9), pp. 2081-2089, 2001. L. Larcher et al., A New Compact DC Model of Floating Gate Memory Cells Without Capacitive Coupling Coefficients, IEEE Trans. on Electron Devices, Vol.49(2), pp. 301-307, 2002. L. Larcher et al., A complete model of E2PROM memory cells for circuit simulations, IEEE Trans. on CAD, Vol. 22(8), pp. 1072-1079, 2003. L. Larcher and P. Pavan, Statistical simulations for Flash memory reliability analysis and prediction, IEEE Trans. on Electron Device, Vol. 51(10), pp. 16361643, 2004. Luca Larcher et al., Modeling NAND Flash memories for circuit simulations, IEEE SISPAD, 2007 L. Larcher et al., Flash memories for SoC: an overview on system constraints and technology issues, (invited paper) IEEE IWSoC2005, 2005. Luca Larcher September, the 14th Università degli Studi di Modena e Reggio Emilia