 l 
 l 
 l 
 l 
Io
 l 
Io
I
dx
Io
I
dx
Io
dI = - γIx dx
I
γ is the
absorption
coefficient
 l 
Io
dI = - γIx dx
dI/Ix = - γdx
I
 l 
Io
I
dI = - γIx dx
dI/Ix = - γdx
I
x=l
I = ∫I=Io 1/Ix dI = - γ ∫x=0 dx
 l 
Io
I
dI = - γIx dx
dI/Ix = - γdx
I
x=l
I = ∫I=Io 1/Ix dI = - γ ∫x=0 dx
[loge I – loge Io] = -γl
 l 
Io
I
dI = - γIx dx
dI/Ix = - γdx
I
x=l
I = ∫I=Io 1/Ix dI = - γ ∫x=0 dx
[loge I – loge Io] = -γl
I/Io = e-γl
I = Ioe-γl
I = Ioe-γl
Beer’s Law
 = (4/3ħc)
Harry Kroto 2004
 = (4/3ħc) n em2
1
Harry Kroto 2004
 = (4/3ħc) n em2 
1
2
Harry Kroto 2004
 = (4/3ħc) n em2  (Nm-Nn)
1
2
3
Harry Kroto 2004
 = (4/3ħc) n em2  (Nm-Nn) (o-)
1
2
3
4
Harry Kroto 2004
 = (4/3ħc) n em2  (Nm-Nn) (o-)
1
2
3
1. Square of the transition moment
4
n em2
Harry Kroto 2004
NB
n em2 ≡ ∫ψn*μeψmdτ
Harry Kroto 2004
 = (4/3ħc) n em2  (Nm-Nn) (o-)
1
2
3
1. Square of the transition moment
2. Frequency of the light
4
n em2

Harry Kroto 2004
 = (4/3ħc) n em2  (Nm-Nn) (o-)
1
2
3
1. Square of the transition moment
2. Frequency of the light
3. Population difference
4
n em2

(Nm- Nn)
Harry Kroto 2004
 = (4/3ħc) n em2  (Nm-Nn) (o-)
1
2
3
1. Square of the transition moment
2. Frequency of the light
3. Population difference
4
n em2

(Nm- Nn)
4. Resonance factor - Dirac delta function (0) = 1
Harry Kroto 2004
Scarica

Harry Kroto