CINECA HPC Infrastructure: state of the art and road map • www.cineca.it Carlo Cavazzoni, HPC department, CINECA Installed HPC Engines Eurora (Eurotech) FERMI, (IBM BGQ) hybrid cluster 64 nodes 1024 SandyBridge cores 64 K20 GPU 64 Xeon PHI coprocessor 150 TFlops peak 10240 nodes 163840 PowerA2 cores 2PFlops peak PLX, (IBM DataPlex) Hybrid cluster 274 nodes 3288 Westmere cores 548 nVidia M2070 (Fermi) 300TFlops peak FERMI @ CINECA PRACE Tier-0 System Architecture: 10 BGQ Frame Model: IBM-BG/Q Processor Type: IBM PowerA2, 1.6 GHz Computing Cores: 163840 Computing Nodes: 10240 RAM: 1GByte / core Internal Network: 5D Torus Disk Space: 2PByte of scratch space Peak Performance: 2PFlop/s Available for ISCRA & PRACE call for projects The PRACE RI provides access to distributed persistent pan-European world class HPC computing and data management resources and services. Expertise in efficient use of the resources is available through participating centers throughout Europe. Available resources are announced for each Call for Proposals.. European Tier 0 National Tier 1 Local Tier 2 Peer reviewed open access PRACE Projects (Tier-0) PRACE Preparatory (Tier-0) DECI Projects (Tier-1) 3. Compute card: One chip module, 16 GB DDR3 Memory, 4. Node Card: 32 Compute Cards, Optical Modules, Link Chips, Torus 2. Single Chip Module 1. Chip: 16 P cores 5b. IO drawer: 8 IO cards w/16 GB 8 PCIe Gen2 x8 slots 5a. Midplane: 16 Node Cards 6. Rack: 2 Midplanes 7. System: 20PF/s BG/Q I/O architecture IB IB PCI_E BG/Q compute racks BG/Q IO Switch File system servers IB SAN I/O drawers I/O nodes PCIe 8 I/O nodes At least one I/O node for each partition/job Minimum partition/job size: 64 nodes, 1024 cores PowerA2 chip, basic info • 64bit RISC Processor • Power instruction set (Power1…Power7, PowerPC) • 4 Floating Point units per core & 4 way MT • 16 cores + 1 + 1 (17th Processor core for system functions) • 1.6GHz • 32MByte cache • system-on-a-chip design • 16GByte of RAM at 1.33GHz • Peak Perf 204.8 gigaflops • power draw of 55 watts • 45 nanometer copper/SOI process (same as Power7) • Water Cooled PowerA2 FPU • • • • • • • • Each FPU on each core has four pipelines execute scalar floating point instructions four-wide SIMD instructions two-wide complex arithmetic SIMD inst. six-stage pipeline maximum of eight concurrent floating point operations per clock plus a load and a store. 9 EURORA #1 in The Green500 List June 2013 What EURORA stant for? EURopean many integrated cORe Architecture What is EURORA? Prototype Project Founded by PRACE 2IP EU project Grant agreement number: RI-283493 Co-designed by CINECA and EUROTECH Where is EURORA? EURORA is installed at CINECA When EURORA has been installed? March 2013 Who is using EURORA? All Italian and EU researchers through PRACE Prototype grant access program 3,200MFLOPS/W – 30KW Why EURORA? (project objectives) Address Today HPC Constraints: Evaluate Hybrid (accelerated) Flops/Watt, Technology: Flops/m2, Intel Xeon Phi; Flops/Dollar. NVIDIA Kepler. Efficient Cooling Technology: Custom Interconnection Technology: hot water cooling (free cooling); 3D Torus network (FPGA); measure power efficiency, evaluate (PUE & evaluation of accelerator-toTCO). accelerator communications. Improve Application Performances: at the same rate as in the past (~Moore’s Law); new programming models. EURORA prototype configuration 64 compute cards 128 Xeon SandyBridge (2.1GHz, 95W and 3.1GHz, 150W) 16GByte DDR3 1600MHz per node 160GByte SSD per node 1 FPGA (Altera Stratix V) per node IB QDR interconnect 3D Torus interconnect 128 Accelerator cards (NVIDA K20 and INTEL PHI) Node card K20 Xeon PHI 13 Node Energy Efficiency Decreases! 14 HPC Service HPC Engines FERMI (IBM BGQ) #12 Top500 2PFlops peak 163840 cores 163Tbyte RAM Power 1.6GHz HPC Services HPC Workloads Eurora PLX (Eurotech hybrid) (IBM x86+GPU) PRACE LISA 0.3PFlops peak ~3500 x86 procs 548 NVIDIA GPU 20 NVIDIA Quadro 16 Fat nodes ISCRA Training #1 Green500 0.17PFlops peak 1024 x86 cores 64 Intel PHI 64 NVIDIA K20 Projects Labs Data Processing Workloads FERMI High througput viz Big mem Repository 1.8PByte Tape 1.5PB Web serv. DB Data mover NUBES Workspace 3.6PByte Industry PLX Data mover HPC Data store Agreements processing FEC We b Cloud serv. Archive FTP External Data Sources HPC Cloud Nubes FEC PLX PRACE Store EUDAT Labs Projects Network IB Custom FERMI EURORA EURORA PLX Gbe Store Nubes Infrastructure Fibre Internet Store CINECA services • High Performance Computing • • • • • • • • • • • Computational workflow Storage Data analytics Data preservation (long term) Data access (web/app) Remote Visualization HPC Training HPC Consulting HPC Hosting Monitoring and Metering … For academia and industry Road Map (data centric) Infrastructure (Q3 2014) Cloud service External Data Sources PRACE SaaS APP EUDAT Other Data Sources Core Data Store New storage Laboratories Human Brain Prj Repository 5PByte viz Data mover We b Archive Analytics APP DB We b serv. processing FTP FERMI Workspace 3.6PByte New analytics Internal data sources Scale-Out Data Processing Core Data Processing Big mem Tape 5+ PByte X86 Cluster Parallel APP New Tier 1 CINECA Procurement Q3 2014 Requisiti di alto livello del sistema Potenza elettrica assorbita: 400KW Dimensione fisica del sistema: 5 racks Potenza di picco del sistema (CPU+GPU): nell'ordine di 1PFlops Potenza di picco del sistema (solo CPU): nell'ordine di 300TFlops Tier 1 CINECA Requisiti di alto livello del sistema Architettura CPU: Intel Xeon Ivy Bridge Numero di core per CPU: 8 @ >3GHz, oppure 12 @ 2.4GHz La scelta della frequenza ed il numero di core dipende dal TDP del socket, dalla densità del sistema e dalla capacità di raffreddamento Numero di server: 500 - 600, ( Peak perf = 600 * 2socket * 12core * 3GHz * 8Flop/clk = 345TFlops ) Il numero di server del sistema potrà dipendere dal costo o dalla geometria della configurazione in termini di numero di nodi solo CPU e numero di nodi CPU+GPU Architettura GPU: Nvidia K40 Numero di GPU: >500 ( Peak perf = 700 * 1.43TFlops = 1PFlops ) Il numero di schede GPU del sistema potrà dipendere dal costo o dalla geometria della configurazione in termini di numero di nodi solo CPU e numero di nodi CPU+GPU Tier 1 CINECA Requisiti di alto livello del sistema Vendor identificati: IBM, Eurotech DRAM Memory: 1GByte/core Verrà richiesta la possibilità di avere un sottoinsieme di nodi con una quantità di memoria più elevata Memoria non volatile locale: >500GByte SSD/HD a seconda del costo e dalla configurazione del sistema Cooling: sistema di raffreddamento a liquido con opzione di free cooling Spazio disco scratch: >300TByte (provided by CINECA) Roadmap 50PFlops Power consumption EURORA 50KW, PLX 350 KW, BGQ 1000KW + ENI EURORA or PLX upgrade 400KW; BGQ 1000KW, Data repository 200KW; ENI R&D Eurora EuroExa STM / ARM board Deployment Eurora industrial prototype 150 TF Eurora or PLX upgrade 1PF peak, 350TF scalar Time line 2013 2014 EuroExa STM / ARM prototype PCP Proto 1PF in a rack EuroExa STM / ARM PF platform multi petaflop system 2015 2016 ETP proto towards exascale board Tier-1 towards exascale Tier-0 50PF 2017 2018 2019 2020 Roadmap to Exascale (architectural trends) HPC Architectures Hybrid: Server class processors: Server class nodes Special purpose nodes Accelerator devices: two model Nvidia Intel AMD FPGA Homogeneus: Server class node: Standar processors Special porpouse nodes Special purpose processors Architectural trends Peak Performance Moore law FPU Performance Dennard law Number of FPUs Moore + Dennard App. Parallelism Amdahl's law Programming Models fundamental paradigm: Message passing Multi-threads Consolidated standard: MPI & OpenMP New task based programming model Special purpose for accelerators: CUDA Intel offload directives OpenACC, OpenCL, Ecc… NO consolidated standard Scripting: python But! 14nm VLSI 0.54 nm Si lattice 300 atoms! There will be still 4~6 cycles (or technology generations) left until we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit, in some year between 2020-30 (H. Iwai, IWJT2008). Thank you Dennard scaling law (downscaling) new VLSI gen. old VLSI gen. L’ = L / 2 V’ = V / 2 do not hold anymore! F’ = F * 2 D’ = 1 / L2 = 4D P’ = P The core frequency and performance do not grow following the Moore’s law any longer L’ = L / 2 V’ = ~V F’ = ~F * 2 D’ = 1 / L2 = 4 * D P’ = 4 * P The power crisis! Increase the number of cores to maintain the architectures evolution on the Moore’s law Programming crisis! Moore’s Law Economic and market law Stacy Smith, Intel’s chief financial officer, later gave some more detail on the economic benefits of staying on the Moore’s Law race. The cost per chip “is going down more than the capital intensity is going up,” Smith said, suggesting Intel’s profit margins should not suffer because of heavy capital spending. “This is the economic beauty of Moore’s Law.” And Intel has a good handle on the next production shift, shrinking circuitry to 10 nanometers. Holt said the company has test chips running on that technology. “We are projecting similar kinds of improvements in cost out to 10 nanometers,” he said. So, despite the challenges, Holt could not be induced to say there’s any looming end to Moore’s Law, the invention race that has been a key driver of electronics innovation since first defined by Intel’s co-founder in the mid-1960s. From WSJ It is all about the number of chips per Si wafer! What about Applications? In a massively parallel context, an upper limit for the scalability of parallel applications is determined by the fraction of the overall execution time spent in non-scalable operations (Amdahl's law). maximum speedup tends to 1/(1−P) P= parallel fraction 1000000 core P = 0.999999 serial fraction= 0.000001 HPC Architectures Hybrid, but… two model Homogeneus, but… What 100PFlops system we will see … my guess IBM (hybrid) Power8+Nvidia GPU Cray (homo/hybrid) with Intel only! Intel (hybrid) Xeon + MIC Arm (homo) only arm chip, but… Nvidia/Arm (hybrid) arm+Nvidia Fujitsu (homo) sparc high density low power China (homo/hybrid) with Intel only Room for AMD console chips Chip Architecture Strongly market driven Intel ARM NVIDIA Power AMD Mobile, Tv set, Screens Video/Image processing New arch to compete with ARM Less Xeon, but PHI Main focus on low power mobile chip Qualcomm, Texas inst. , Nvidia, ST, ecc new HPC market, server maket GPU alone will not last long ARM+GPU, Power+GPU Embedded market Power+GPU, only chance for HPC Console market Still some chance for HPC