TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli LEZIONE A.11 La concentrazione In questa lezione.. In questa lezione facciamo la conoscenza con l’ultimo, diffuso, concetto utilizzato per descrivere la variabilità di un carattere: la concentrazione. Approderemo allo stesso concetto per due strade assai differenti: Da una parte formuleremo un nuovo criterio di misura della variabilità non come dispersione intorno a un polo centrale, ma come media delle differenze tra tutte le osservazioni prese a due a due. Di questa misura: Impareremo una procedura rapida di calcolo. Effettueremo la normalizzazione di questa misura. Introdurremo poi un nuovo tipo di grafico, che collega proporzioni via via cumulate di una popolazione con le corrispondenti proporzioni dell’intensità totale del carattere da esse possedute. In particolare: Esamineremo le proprietà di questa curva ben nota in Economia. Svolgeremo degli esempi, alcuni semplici altri più articolati. Infine introdurremo il concetto di ‘dominanza’ tra due curve. La differenza media Un diverso modo per studiare la "diversità di valori osservati" consiste nel considerare gli informatori elementari [distanze] dij=|xi–xj| i,j. Si possono costruire indici di mutua variabilità, considerando una qualche funzione D(x) di sintesi di una v.s. X che soddisfi le proprietà canoniche (mai negativa, pari a zero SSE xi=xj i,j, dotata delle proprietà di invarianza rispetto alle traslazioni e monotonicità). Come per la funzione di perdita, sintetizziamo le q q distanze in una media ponderata. 1 In particolare definiamo Differenza me- xi x j ni n j dia semplice senza ripetizione: N N 1 i 1 j 1 Il calcolo di , come si può immaginare, è lungo e macchinoso, richiedendo di conteggiare le differenze tra tutte le modalità osservate a due a due. Ma per v.s. discrete esiste, ed è equivalente, una procedura rapida di calcolo. Indicate con qi=xini le già note intensità specifiche e definite (per analogia alle cumulate Ni) Qi=k=1..iqk le corrispondenti intensità cumulate, la differenza media semplice è pari a: m 2 m qi N i Qi ni N N 1 i 1 i 1 Un esempio ‘all’osso’ xi ni Ni qi=xini Qi qiNi Qi ni 0 4 4 0 0 0 0 4 2 6 8 8 48 16 8 4 10 32 40 320 160 A=368 B=176 N=10 T=40 L’esempio è stupido, come è stupida la procedura di calcolo. Si tratta di conteggiare le due colonne aggiuntive delle qiNi e delle Qini, senza pretendere che abbiano alcun significato! A questo punto il calcolo di richiede solo i tre parametri cerchiati m 2 2 m qi N i Qi ni 368 176 4.2 N N 1 i 1 i 1 10 9 Rapporto di concentrazione di Gini E’ possibile normalizzare , è cioè possibile trovarne un massimo? La risposta è la stessa data per la varianza. La differenza media cresce con l’ordine di grandezza del fenomeno studiato, ma per una particolare categoria di caratteri, che abbiamo definito trasferibili, si può trovare un massimo a parità di intensità totale T, che è quello della distribuzione massimante di X: 0 N m T X" N 1 1 Per questa distribuzione la differenza media semplice senza ripetizione è: max 1 1 N m 0 N 1 1 0 N m N 1 1 2 N m N 1 2 m N N 1 N N 1 Si può perciò definire un normalizzato: * R si chiama rapporto di concentrazione di Gini. max R 2m Eterogeneità dispersione concentrazione Confrontiamo i concetti di eterogeneità, dispersione e concentrazione. I tre concetti sembrano avere consistenti punti di sovrapposizione; ma per coglierne le differenze la cosa migliore è confrontare le situazioni definite come ‘di minimo’ e (nel caso di caratteri trasferibili) ‘di massimo’: La situazione di mutabilità (o eterogeneità) nulla (un unica modalità osservata N volte) coincide con quella di concentrazione nulla e con quella di dispersione nulla. La distribuzione di massima eterogeneità (tante modalità equifrequenti) è invece per definizione diversa dalla distribuzione massimante [massima concentrazione o massima varianza per caratteri trasferibili]. La differenza è lampante! Max eterogeneità: C 1A B 1 1 X* 3 3 3 Max concentrazione e dispersione: T 0 X* N 1 1 Confrontare frequenze e intensità cumulate Nel calcolo rapido di abbiamo introdotto, accanto al concetto di frequenza cumulata, quello di intensità cumulata. Come per la prima, possiamo definire un'intensità cumulata relativa: i i N i nk k 1 nk Fi f k k 1 k 1 k 1 N i i nk m n k 1 i i i k 1 k 1 xk nk T k 1 i Qi x k n k S i s k k x k nk x k nk k 1 m k 1 Il confronto tra le due successioni Fi e Si, per ogni modalità i, è di uso comune e prezioso per valutare la mutua variabilità (o la concentrazione) di un carattere trasferibile in una popolazione. Il senso del confronto Quando diciamo che in certi paesi del Sud del Mondo "il 90 % della popolazione possiede solo il 5 % delle risorse" facciamo riferimento ad una variabile X = risorse disponibili che ha, per esempio, una distribuzione così fatta (numerosità espressa in milioni): Dunque la concentrazione di un carattere trasferibile è un modo alternativo ma molto evocativo per descrivere la mutua variabilità di un fenomeno. come rappresentarla graficamente xi ni Ni Fi qi Qi Si 1 90 90 0,90 90 90 0,05 100 9 99 0,99 900 990 0,55 810 1 100 1 810 1800 1 100 Ci poniamo allora due domande sulla Concentrazione: 1800 come misurarla sinteticamente Dieci monete e cinque persone Dieci monete siano divise non equamente tra 5 individui:X = {1,1,1,2,5}. Ognuno dei 5 individui costituisce il 20 % della popolazione. Posti (per convenzione) in ordine crescente di carattere posseduto, il primo individuo (20 % della popolazione) possiede solo il 10 % del carattere, l’ultimo il 50% dell’intero capitale. C'è quindi una certa concentrazione del carattere. Viceversa nella seriazione Y={2,2,2,2,2} a ogni 20 % della popolazione spetta la stessa quota (20 %) del carattere. Formalizziamo i due casi in termini di frequenze e intensità cumulate. xi ni Ni Fi qi Qi Si yi ni Ni Fi qi Qi Si 1 1 1 0,2 1 1 0,1 2 1 1 0,2 2 2 0,2 1 1 2 0,4 1 2 0,2 2 1 2 0,4 2 4 0,4 1 1 3 0,6 1 3 0,3 2 1 3 0,6 2 6 0,5 2 1 4 0,8 2 5 0,5 2 1 4 0,8 2 8 0,8 5 1 5 1 5 10 1 2 1 5 1 2 10 1 5 10 5 10 La curva di Lorenz-Gini La curva di Lorenz–Gini è la spezzata, posta nel primo quadrante, ottenuta congiungendo i punti di 1 coordinate (Fi,Si) [frequenze cumulate relative e intensità cumu- 0,9 late relative], inscritta nel quadra- 0,8 to compreso tra O (0,0) e P (1,1). 0,7 0,6 La curva può essere costruita con dati disaggregati (serie) o aggregati. Per 0,5 es. la v.s. X delle 10 monete è 0,4 0,3 rappresentabile anche così: 0,2 xi ni Ni Fi qi Qi Si 0,1 1 3 3 0,6 3 3 0,3 0 2 1 4 0,8 2 5 0,5 5 1 5 1 5 10 1 5 10 Curva di Lorenz - Gini Si Fi 0 0,2 0,4 0,6 0,8 1 Proprietà della curva di Lorenz-Gini / 1 La spezzata giace sempre nella parte inferiore del dominio (Fi,Si): quella cioè sottostante alla bisettrice del quadrante che corrisponde al caso di concentrazione nulla o equiripartizione (Fi = Si per ogni i). Ciò significa che ogni punto della spezzata (tranne il primo e l'ultimo) ha ordinata inferiore all’ascissa e ciò per costruzione, in quanto le modalità xi sono disposte in ordine crescente. i xk nk nk Si F T k 1 k 1 N i Curva di Lorenz - Gini Qi 10 9 8 7 6 5 4 3 2 1 0 Ni 0 1 2 3 4 5 Come per frequenze e frequenze cumulate, anche nella rappresentazione grafica della concentrazione possiamo sostituire le coordinate assolute (Ni, Qi) a quelle relative (Fi, Si), mantenendo inalterate le proporzioni interne. Solamente, il massimo delle coordinate sarà P (N, T) invece che (1, 1). Proprietà della curva di Lorenz-Gini / 2 Inoltre la spezzata ha concavità sempre rivolta verso l'alto, cioè i segmenti hanno pendenza sempre crescente. Curva di Lorenz - Gini Qi 10 9 8 La pendenza di una retta è data dal rap7 porto tra i due cateti del triangolo ret6 tangolo (è la ‘tangente’ dell’angolo). Ma: 5 Q Qi 1 xi ni 4 tg i i xi i 3 N i N i 1 ni 2 1 Poiché per costruzione le modalità sono 0 messe in ordine crescente, tgi–1<tgi i. Ni 0 1 2 3 4 5 La spezzata corrispondente al caso di concentrazione nulla (equiripartizione) è la bisettrice del quadrante, per la quale Fi = Si i. Misurare la concentrazione con Lorenz-Gini Il grado di concentrazione di una v.s. è tanto più alto quanto più la concavità della spezzata si allontana dalla bisettrice e si avvicina alla forma limite della distribuzione massimante, corrispondente alla spezzata OCP, dove C=(N–1;0) Perfetta equiripartizione N m T 0 X* 1 N 1 Si può allora definire geometricamente una misura di concentrazione come rapporto tra l'area (A) compresa tra la bisettrice [situazione di equiripartizione] e la spezzata (area a tratteggio verticale) e l'area Amax compresa tra la bisettrice e la spezzata di massima concentrazione (a tratteggio orizzontale). Max concentrazione A R Amax Il rapporto di concentrazione di Gini Il rapporto tra le 2 aree è un indice standardizzato e si chiama Rapporto di Concentrazione di Gini. Ci sono molte procedure per calcolare R. Ma una di queste usa misure a noi già familiari. Si può dimostrare che R è proprio equivalente alla differenza media senza ripetizioni normalizzata. Per il calcolo di R dunque la procedura rapida di calcolo di , già vista, è la più conveniente. R A Amax 2 m x m 2 2 m ( A B) qi N i Qi ni N N 1 N N 1 i 1 i 1 Vediamo qualche esempio. Un primo esempio xi ni qi Ni Qi 339 qiNi 1 339 1 339 339 461 1 461 2 800 697 1 697 3 1320 1 1320 1524 1 1798 Qini Fi Si 339 0,11 0,03 922 800 0,22 0,07 1497 2091 1497 0.33 0,13 4 2817 5280 2817 0,44 0,24 1524 5 4341 7620 4341 0,55 0,37 1 1798 6 6139 10788 6139 0,67 0,52 1857 1 1857 7 7996 12999 7996 0,78 0,67 1889 1 1889 8 9885 15112 9885 0,89 0,83 1994 1 1994 9 11879 17946 11879 1 1 9 11879 73097 45693 =2(A-B)/(N.(N-1))= =54808/(9.8)=761,22 max=2(T/N)=23758/9= =2639,78 R = /max= 0,288 Concentrazione degli introiti pubblicitari (milioni di euro) tra nove emittenti radiofoniche. (in questo caso le numerosità specifiche sono tutte unitarie) 1 P(0.55,0.37) 0,5 Ricordatevi: il grafico si costruisce individuando i punti blu, e collegandoli poi tra loro 0 0 0,5 1 Un secondo esempio xi ni Ni Qi qiNi Qini 10 115 1150 115 1150 132250 132250 0,115 0,026 30 399 11970 514 13120 6152580 5234880 0,514 0,301 50 315 15750 829 28870 13056750 9094050 0,829 0,663 70 112 7840 941 36710 7377440 4111520 0,941 0,844 90 34 3060 975 39770 2983500 1352180 0,975 0,914 130 20 2600 995 42370 2587000 847400 0,995 0,974 230 5 1150 1000 43520 1150000 217600 1 1 1000 43520 33439520 20989880 qi=xini 2 24899280 (33439520 20989880) 24,924 1000 999 999000 max 2 mx 2 ( 43,52) 87 R 24,924 0,2865 max 87 Questa area è il 28,65% dell’intera area triangolare sottesa alla bisettrice Fi Si Distribuzione dei redditi familiari in Lombardia m=43,52 1 0,8 0,6 0,4 0,2 0 0 0,2 0,4 0,6 0,8 1 Distribuzione gaussiana e curva di Lorenz xi ni qi=xini Ni Fi Qi Si 10 6 60 6 0,006 60 0,001 30 60 1800 66 0,066 1860 0,026 50 242 12100 308 0,308 13960 0,199 70 384 26880 692 0,692 40840 0,583 90 242 21780 934 0,934 62620 0,895 110 60 6600 994 0,994 69220 0,989 130 6 780 1000 1 70000 1 Distribuzione redditi N(70; 20,7) 20 18 16 14 12 10 8 6 4 2 0 0 20 40 La distribuzione osservata dei redditi è skew. Ma qual è la concentrazione (e la curva di Lorenz) se, a parità di intensità totale, la distribuzione è gaussiana? In questo caso i dati distribuiti secondo una N(m,) mostrano minore concentrazione (curva di Lorenz più vicina alla bisettrice). Ma non c’è una regola. Simmetria e concentrazione di una v.s. sono due proprietà distinte: ognuna va per la sua strada. 60 1 80 100 120 140 Blu distr.gaussiana 0,8 Rosso osservata 0,6 0,5 0,4 0,2 0 0 0,2 0,4 0,5 0,6 0,8 1 Distribuzione uniforme e curva di Lorenz xi ni qi=xini Ni Fi Qi Si 10 143 1430 143 0,143 1430 0,020 30 143 4290 286 0,286 5720 0,082 50 143 7150 429 0,429 12870 0,184 70 142 9940 571 0,571 22810 0,326 90 143 12870 714 0,714 35680 0,510 110 143 15730 857 0,857 51410 0,734 130 143 18590 1000 1 70000 1 20 18 16 14 12 10 8 6 4 2 0 Distribuzione uniforme (m=70) 0 20 40 Ecco subito una riprova. A parità di intensità totale, una distribuzione uniforme (più dispersa della N) mostra concentrazione maggiore di quella osservata. Ma attenzione. La distribuzione skew osservata ha curva di Lorenz più vicina alla bisettrice per le cumulate basse della popolazione (i poveri) ma poi interseca quella della distribuzione uniforme, e per i più ricchi (coda a destra della curva) essa rivela più sperequazione. Per capir meglio ci vuole un terzo esempio. 60 1 80 100 120 140 Blu distrib.uniforme 0,8 Rosso osservata 0,6 0,5 0,4 0,2 0 0 0,2 0,4 0,5 0,6 0,8 1 Un terzo esempio Xi (000) ni (000) qi ante (10M) Fi Siante 0-2 2778 463 .088 .020 2-4 8560 2703 .361 .134 4-6 5592 2785 .539 .252 6-8 3964 2763 .665 .369 8-10 2985 2666 .760 .481 10-15 4544 5511 .905 .715 15-20 1746 2986 .961 .841 20-30 887 2108 .989 .930 30-40 201 682 .995 .959 40-99 158 965 1 1 A sinistra: distribuzione dei redditi tra i titolari di codice fiscale in UK, 1984. m=7,52; R=0,397 (molto superiore quella Lombarda!) a A destra: redistribuzione dei redditi dopo tassazione progressiva. T=tax (10M) qi post (10M) %T/ qipost Sipost 0 463 - .023 52 2651 2% .156 254 2531 9% .283 400 2363 14% .402 426 2240 16% .514 932 4579 17% .744 583 2403 20% .865 489 1619 23% .946 198 484 29% .971 381 584 39% 1 m=6,34; R=0,352 3715 19917 16% Osserviamo su dati reali (Economic Trends del Central Statistical Office) l’effetto di una tassazione sui redditi. A parità di proporzione di popolazione, la proporzione di reddito è sempre superiore, cioè più vicina alla bisettrice che esprime la situazione di perfetta equiripartizione. 31415 23632 Trasferimenti equiparativi e concetrativi Essendo calcolata su caratteri trasferibili la misura di concentrazione è sensibile a trasferimenti "paretiani": trasferimenti equiparativi: tolgono unità di conto a qualche individuo attribuendole ad altri che possiedono una quota del carattere totale pari o inferiore a quella posseduta dall‘ individuo depauperato (per es. una imposta progressiva che si traduce in servizi per i meno abbienti) 1 Proporzione di redditi Rosso = prima dell’imposta Blu = dopo l’imposta (più di rado) trasferimenti concentrativi (per es. fissare per il buoProporzione di popolazione no-scuola una soglia minima rimbor- 0 sabile di 150-200 euro e nel frat- La manovra inglese del 1984 è un e0 tempo derubricare i falsi in bilancio). sempio di trasferimento equiparativo. 1 Dominanza secondo Lorenz Eccoci tornati, in conclusione, allo strano caso di due curve di Lorenz (redditi osservati e redditi con distribuzione uniforme) intersecate tra loro. Non è un caso eccezionale! Date due curve di Lorenz A e B, diciamo che A è Lorenz-dominante rispetto a B se la curva di A più vicina alla bisettrice in ogni punto, cioè: S iA > S iB Fi Ovvio che una curva dominante su un’altra corrisponde a una situazione di maggiore perequazione, quindi Se SiA>SiB Fi RA < RB Le due curve inglesi sono un buon esempio. Ma possiamo pensare a situazioni meno nette, in cui le scelte si rivelano più complesse. Per esempio… Equità e polarizzazione.. Supponiamo che la distribuzione dei redditi nella società A, per effetto di una certa politica, assuma la forma B, con lo stesso ammontare complessivo di risorse (per es. stesso Pil), ma una diversa configurazione. 1 20 20 20 20 400 400 0,20 0,05 A=2(32816-17808)/(100.99)= =3,03 3 52 156 72 176 11232 9152 0,72 0,44 maxA =2(400/100)=8 5 16 80 88 256 7040 4096 0,88 0,64 8 8 64 96 320 6144 2560 0,96 0,80 RA = /max= 0,379 20 4 80 100 400 8000 1600 1 1 100 400 32816 17808 RB = 0,354 < 0,379 = RA La società in B è più perequata niB qi qiNi Qini B=2(38500-24500)/(100.99)= =2,83 xiA xiB niA qi Ni Ni Qi qiNi Qi Qini Fi Si Fi Si 0 20 0 20 0 0 0 0,20 0 4 75 300 95 300 28500 22500 0,95 0,75 5 100 100 400 10000 2000 1 1 100 400 38500 24500 20 maxB =2(400/100)=8 RB = /max= 0,354 La società in B è più ‘perequata’.. Eppure sembra più polarizzata che mai! Cosa si può dire in più confrontando le due curve di Lorenz? Se due curve di Lorenz si intersecano Le politiche attuate hanno prodotto in B una scomparsa dei ceti medioalti (X=8) e un addensamento della maggior parte della popolazione (75 su 100) su valori medio bassi. 1 Rosso = società B Blu = società A In compenso il restante 25% è polarizzato tra un 20% di nullatenenti e un 5% di benestanti. R di Gini suggerisce sinteticamente un’accresciuta perequazione: ma non agli estremi della scala sociale. E’ meglio allora una società (B) con un ceto medio omogeneo ma con forti sperequazioni verso il basso, o una società (A) più perequata là dove ci sono meno risorse? 0 R di 0 Gini sintetizza una situazione. Ma se1 vogliamo interpretarla in funzione di diversi obiettivi alternativi, meglio leggere il grafico!