Teoria a molti-corpi della materia nucleare Lezione IV 1. Implicazioni per le stelle di neutroni 2. Cenni sulla fase superfluida 3. Indicazioni sulla EoS da dati osservativi e da collisioni fra ioni pesanti 4. Confronto con EoS fenomenologiche 5. Formulazione relativistica, l’ approssimazione Dirac-Brueckner 6. Transizione alla fase di quark, modelli per la fase deconfinata Rappresentazione schematica di una stella massiva in condizioni pre-collasso SN 1987a Exploding Before explosion La “nuvola” espulsa e il rimanente oggetto compatto Abbondanza di oggetti compatti ! Visione schematica di una pulsar e del suo “faro” “faro” in direzione della terra “faro” fuori direzione Distribuzione delle pulsars in cielo rispetto al piano galattico A section (schematic) of a neutron star La parte piu’ interna di una Stella di neutroni “convenzionale” e’ dominata da materia nucleare omogenea e fortemente asimmetrica Piu’ avanti ci occuperemo della “crosta” The baryonic Equations of State HHJ : Astrophys. J. 525, L45 (1999 BBG : PRC 69 , 018801 (2004) AP : PRC 58, 1804 (1998) Phenomenolocical area from Danielewicz et al., Science 298 (2002) 1592 Nonostante le incertezze dell’ analisi sembra esserci una ben definita discriminazione tra le diverse EOS Kh. Gad Nucl. Phys. 747 (2005) 655 Composition of asymmetric and beta-stable matter •Parabolic approximation Asymmetry parameter n p 1 - 2x p B B ( , , xY ) ( , 0, xY ) 2 E sym ( , xY ) A A B B E sym ( , xY ) ( , 1, xY ) ( , 0, xY ) A A •Composition of stellar matter n p e i) Chemical equilibrium among the different baryonic species e ii) Charge neutrality p e iii) Baryon number conservation p n Symmetry energy as a function of density Proton fraction as a function of density in neutron stars AP becomes superluminal at high density and has no DU Hyperon influence on hadronic EOS Composition of asymmetric and beta-stable matter including hyperons •Parabolic approximation Asymmetry parameter n p 1 - 2x p B B ( , , xY ) ( , 0, xY ) 2 E sym ( , xY ) A A B B E sym ( , xY ) ( , 1, xY ) ( , 0, xY ) A A •Composition of stellar matter n p e i) Chemical equilibrium among the e different baryonic species 2 n p n p e extended to hyperons ii) Charge neutrality iii) Baryon number conservation p n Including hyperons inside the neutron stars •Shift of the hyperon onset points down to 2-3 times saturation density •At high densities N and Y present almost in the same percentage. Mass-Radius relation • Inclusion of Y decreases the maximum mass value H.J. Schulze et al., PRC 73, 058801 (2006) Including Quark matter Since we have no theory which describes both confined and deconfined phases, we uses two separate EOS for baryon and quark matter and assumes a first order phase transition. a) Baryon EOS. BBG AP HHJ b) Quark matter EOS. MIT bag model Nambu-Jona Lasinio Coloror dielectric model The three baryon EOS for beta-stable neutron star matter in the pressure-chemical potential plane. MIT bag model. “Naive version” PRC , 025802 (2002) Materia nucleare simmetrica Al decrescere del valore della bag constant la massa massima delle NS tende a crescere. Tuttavia B non puo’ essere troppo piccolo altrimenti lo stato fondamentale della materia nucleare all densita’ di saturazione e’ nella fase deconfinata ! Density dependent bag “constant” Q 1 .1 GeV fm 3 Density profiles of different phases MIT bag model Evidence for “large” mass ? Nice et al. ApJ 634, 1242 (2005) PSR J0751+1807 M = 2.1 +/- 0.2 Ozel, astro-ph /0605106 EXO 0748 – 676 M > 1.8 Quaintrell et al. A&A 401, 313 (2003) NS in VelaX-1 1.8 < M < 2 Alford et al. , ApJ 629 (2005) 969 QM a4 a2 3 4 2 a4 4 3 4 2 a2 2 Beff Non-perturbative corrections ; Strange quark mass a4 1 corresponds to the usual MIT bag model Freedman & McLerran 1978 Maximum mass depends mainly on the parametrization and not on the transition point BBG HHJ The problem of nuclear matter ground state is solved. But, in any case one needs an additional repulsion in quark matter at high density NJL Model The model is questionable at high density where the cutoff can be comparable with the Fermi momentum Including Color Superconductivity in NJL Steiner,Reddy and Prakash 2002 Buballa & Oertel 2002. Application to NS CT + GSI , PLB 562,,153 (2003) Mass radius relationship Maximum mass NJL , the quark current masses as a function of density Equivalence between NJL and MIT bag model above chiral transition (two flavours). For NJL B = 170 MeV The pressure is zero at zero density ! (no confinement) The CDM model : the equation of state for symmetric matter C. Maieron et al., PRD 70, 043010 (2004) The model is confining The CDM model : maximum mass of neutron star The effective Bag constsnt in the CDM model Some (tentative) conclusions 1. The transition to quark matter in NS looks likely, but the amount of quark matter depends on the quak matter model. 2. If the “observed” high NS masses (about 2 solar mass) have to be reproduced, additional repulsion is needed with respect to “naive” quark models . The situation resembles the one at the beginning of NS physics with the TOV solution for the free neutron gas The confirmation of a mass definitely larger than 2 would be a major breakthrough 3. Further constraints can come from other observational data (cooling, glitches …….) Comparison between phenomenological forces and microscopic calculations (BBG) at sub-saturation densities. M.Baldo et al.. Nucl. Phys. A736, 241 (2004) Asymmetry (isospin) dependence of EOS Symmetry energy as a function of density. A comparison at low density. Microscopic results approximately fitted by 31.3 ( / 0 )0.6 208 Trying connection with phenomenology : the Pb case. Density functional from microscopic calculations rel. mean field Skyrme and Gogny microscopic functional The value of r_n - r_p from mic. fun. is consistent with data A section (schematic) of a neutron star The structure of nuclei and Z/N ratio are dictated by beta n p e equilibrium Negele & Vautherin classical paper. Simple functional, and no pairing. Outer Crust No drip region Inner Crust Drip region Position of the neutron chemical potential Looking for the energy minimum at a fixed baryon density Density = 1/30 saturation density Wigner-Seitz approximation The neutron matter EOS Solid line : Fayans functional ; Dashes : SLy4 Dotted line : microscopic (Av-18) Including pairing in crust structure calculations M.B., E. Saperstein et al. , Nucl. Phys. A750, 409 (2005) Dependence on the functionals In search of the energy minimum as a function of the Z value inside the WS cell .. . .. . . . . . Neutron density profile at different Fermi momenta Proton density profile at different Fermi momenta 1 11 2 1 Negele & Vautherin 2 Uniform nuclear matter (M.B.,Maieron,Schuck,Vinas NPA 736, 241 (2004)) Comparing different Equations of State for low density Despite the quite different lattice structure, the EoS appears stable.